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INTRODUCTION 

The economic vitality of the “Golden Horseshoe”, a densely populated and industrialized region 
which encompasses Southern Ontario, Canada and parts of New York State including the 
Buffalo-Niagara Region, is heavily dependent upon the ability to move goods freely and 
efficiently across the Canadian-US border. This highlights the critical importance of the Niagara 
Frontier International border crossing, one of North America’s busiest portals for travel and trade, 
where approximately 30% of the total Canada-US trade crosses, along with millions of 
immigrants and tourists every year.  In recent years, and as a result of the continued increase in 
travel demand across the border coupled with the need for tighter security and inspection 
procedures after September 11, border crossing delay has become a critical problem with 
tremendous economic and social costs. 

Given the critical role that the border crossings play in the overall performance of the 
Niagara Frontier transportation system and hence the region’s economy, the Niagara 
International Transportation Technology Coalition (NITTEC), a coalition of fourteen different 
agencies in Western New York and Southern Ontario which serves as the Traffic Operations 
Center (TOC) for the region, presently provides current or instantaneous border-crossing travel 
times to the public, based on currently observed estimates of delay at the border. While current 
border-crossing delay estimates are quite valuable in themselves, the ability to provide short-
term forecasts of border crossing traffic volumes and delay would provide several additional 
benefits. 

First, for border crossings, current travel times may be quite different from the travel 
times that the drivers would actually experience by the time they arrive at the border (i.e. 
experienced travel times).  This is especially the case if there is a significant lag between the time 
when a traveler receives (or needs to act upon) the information and the time when he/she arrives 
at the border (at the present time, border delay estimates are typically updated every hour).  
Second, the ability to predict border crossing traffic would be quite helpful to customs and 
border protection authorities in terms of determining the needed staffing level to meet the 
expected travel demand.  Third, with predicted border crossing volumes, intelligent routing 
algorithms could be developed to optimally route border-destined traffic in a fashion that would 
minimize the overall system travel time. 

PURPOSE AND SCOPE 

This study had two primary objectives.  The first objective was to develop a novel 
forecasting method for the on-line, short-term prediction of hourly traffic volumes at the Niagara 
Frontier border crossings. The focus of that part of the study was on first predicting the border 
crossing volume, rather than predicting the border delay border delay right way.  This is because 
predicting the volume is a pre-requisite for predicting the delay, assuming information about the 
border crossing staffing level, the number of customs inspection booths open, and the average 
inspection time is available.  Moreover, predicting border crossing volumes have a direct utility 
for estimating the required border staffing level and for intelligent routing applications as 
previously mentioned.  The second objective of the study was to develop queueing models which 
would use the predicted traffic volume to estimate the future border delay.  As a case study, we 
consider the Peace Bridge border crossing, which is one of the busiest Niagara Frontier border 
crossings, serving over 4.76 million cars annually. 
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It should be noted that while there is currently an extensive literature on the short-term 
traffic volume prediction problem and delay estimation, the method proposed in this study is 
unique in terms of its focus on the problem in the context of US-Canadian border crossing traffic 
which has several unique features (e.g., significant differences between weekday and weekend 
traffic, sensitivity to special events such as sporting events and national and religious holidays,.. 
etc.).  Moreover, the study proposes a multi-model combined forecast method which combines 
both traditional time series analysis, specifically the Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model, with Support Vector Regression (SVR), an approach to solving 
classification and regression analysis problems recently proposed by the computer science and 
artificial intelligence (AI) community, in order to improve the quality of the traffic volume 
predictions.  A third unique aspect of the second part of the study involves the development of an 
inverse M/M/c queneing model to estimate the average delay based on the traffic volume 
predicted from the first part of the study.  Inverse models were needed because the available 
hourly traffic counts for the Peace Bridge which were used in the study represented outgoing 
volumes (i.e. number of vehicles processed per hour) rather than incoming volumes. 

 This report is divided into two parts reflecting the afore-mentioned two objectives of the 
study.  The first part describes the development of the multi-model combined forecasting method 
used to predict hourly traffic volumes at the Peace Bridge.  The second part, on the other hand, 
discusses the development of the inverse M/M/c queueing model. 

 

PART I A MULTI-MODEL COMBINED FORECASTING METHOD for the ON-LINE 
PREDICTION of BORDER CROSSING TRAFFIC at the PEACE BRIDGE 

LITERATURE REVIEW 

Short-term Traffic Volume Prediction Methodologies 

As opposed to long-term volume forecasting which provides Annual Average Daily Traffic 
(AADT) forecasts for relatively long prediction horizons (sometimes reaching up to 20 years), 
short-term traffic forecasting uses real-time traffic information from roadway sensors to predict 
the likely changes in traffic flow for much shorter prediction periods, which typically range 
between 5 minutes to one hour into the future.  Short-term forecasting thus provides the 
functionality needed for on-line transportation system management and control. Among the 
numerous methods recently proposed in the literature for short-term traffic volume forecasting, 
two groups of algorithms or approaches have received wide attention.  These are: (1) time-series 
analysis; and (2) AI-based methods such as Neural Networks (NN) and SVR. Given the 
extensive number of previous studies in this regard, this section will only provide representative 
examples of each group. 

Time Series Analysis 

The SARIMA model is one of the most popular and extensively used time series models for 
short-term traffic volume prediction.  Williams and Hoel (1) presented the theoretical basis for 
modeling univariate traffic condition data streams as SARIMA processes.  Smith et al. (2) 
showed that SARIMA performs better than nonparametric nearest neighbor regression on the 
single point short-term traffic flow forecasting problem. In addition, Cools et al. (3) used both 
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ARIMA with explanatory variables (ARIMAX) and SARIMA with explanatory variables 
(SARIMAX) to predict daily traffic counts.   

A limitation of SARIMA with respect to time series forecasting in general, however, is 
that the model assumes a linear correlation structure among the time series values, and hence 
may not be able to capture the non-linearity inherent in complex real-world problems.  Given this, 
some researchers have recently proposed combining time series forecasting with other methods 
such as AI-based algorithms (4-6).  In this report, we propose a similar approach based on 
combining SARIMA with SVR. 

AI-based Methods 

NNs are among the AI-based methods most widely used for short-term volume forecasting.   
Many different types of NNs have been proposed including back propagation networks (7), 
radial basis function networks (8), resource allocating networks (9), and wavelet networks (10).  
Besides NNs, SVR has also recently been used (e.g. 11,12).  Moreover, Huang and Sadek (13) 
recently proposed a novel AI-based forecasting approach inspired by human memory, called 
Spinning Network (SPN), and used it for short-term traffic volume forecasting.  One of the main 
advantages of AI-based methods for short-term volume forecasting is their ability to capture the 
non-linear aspects of real-world phenomena.      

Traffic Data Classification 

Regardless of the method used for short-term volume forecasting, several studies have shown 
that the prediction results could be significantly improved if the input data is first classified or 
clustered (14, 15).  This is mainly because daily traffic patterns vary significantly based on 
whether the prediction is for a weekday or a weekend, and whether it is a normal or a special 
type of a day (e.g., a holiday or a special event day). Besides improving accuracy, dividing the 
dataset can also help reduce computation cost (16). Given this, preliminary data analysis is often 
conducted, prior to modeling, to determine if traffic data classification is necessary. 

 One approach for classifying the traffic data used for volume forecasting is to divide the 
traffic data directly based on the type of the day to which they belong such as weekdays, Fridays, 
Saturdays, Sundays or Holidays.  We refer to this method as the simple classification method for 
traffic data.  Given the complex nature of the traffic system, however, more sophisticated 
classification and clustering methods have also been tried in the literature, including clustering 
methods based on fuzzy set theory. 

 Fuzzy C-means Method (FCM) is one of the most widely used fuzzy clustering 
algorithms. In FCM, given a finite set of data ܺ ൌ ሼݔଵ, ,ଶݔ … ,  ௡ሽ, the algorithm returns a list of cݔ
cluster centers ܥ ൌ ሼܿଵ, ܿଶ, … , ܿ௡ሽ and a partition matrix ܷ ൌ ௜,௝ݑ א ሾ0,1ሿ, ݅ ൌ 1, … ݊, ݆ ൌ 1, … , ܿ, 
where each element ݑ௜,௝ tells the degree to which element ݔ௜ belongs to cluster ௝ܿ (17).   In the 
current method, both simple and FCM were examined and the classification results were 
compared. 

Border Crossing Studies  

While several previous studies assessed the economic impact of border crossing delay, very few 
studies focused on modeling traffic flow conditions at border crossings.  Moreover, most of those 
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studies have focused on modeling border crossing delay for off-line planning applications, and 
not on the on-line prediction model which is the focus of this report.  Examples include a study 
by Paselk and Mannering (18) which used duration models, and a study by Lin and Lin (19) 
which proposed a delay model for planning applications.  More recently, Kam et el. (20) describe 
the development of a NN for predicting delay at border crossing.  However, the data used to 
develop the model came solely from a simulation model, and not from real-world observations. 

MODELING METHODOLOGY BACKGROUND 

As previously mentioned, this study proposes a multi-model combined forecast method, based on 
combining forecasts from SARIMA and SVR.  A brief description of both SARIMA and SVR is 
provided below, followed by a description of the method we used to combine the forecasts from 
the two models. 

SARIMA Model 

According to Box and Jenkins (21), a time series ሼZ୲|t ൌ 1,2, … , kሽ is generated by 
SARIMAሺp, d, qሻ ൈ ሺP, D, Qሻୱ if:  

ΦPሺBୱሻ߮௣ሺBሻ׏ୱ
Dୢ׏Z୲ ൌ  ,ሻܽ௧   [Equation 1]ܤ௦ሻθ୯ሺܤொሺ߆

where p, d, q, P, D, Q are integers and s is the seasonality;  ߮௣ሺBሻ ൌ 1 െ ߮ଵܤ െ ߮ଶBଶ െ ڮ െ
߮௣B୮ is the nonseasonal autoregressive operator of p order; Φ௉ሺBୱሻ ൌ 1 െ Φଵ௦ܤଵ௦ െ Φଶ௦Bଶୱ െ
ڮ െ Φ௉௦B୮ୱ is the seasonal autoregressive operator of P order; θ௤ሺBሻ ൌ 1 െ θଵܤ െ θଶBଶ െ ڮ െ
θ௤B୯ is the nonseasonal moving average operator of q order; ߆ொሺBୱሻ ൌ 1 െ ଵ௦ܤଵ௦߆ െ ଶ௦Bଶୱ߆ െ
ڮ െ ୱ׏ ,ொ௦BQୱ is the seasonal moving average operator of Q order߆

Dൌ ሺ1 െ BୱሻD is the seasonal 
differencing operator of order D, ୢ׏ൌ ሺ1 െ Bሻୢ is the nonseasonal differencing operator of order 
d; and ܽ௧ is the estimated residual at time t – assumed to be distributed as ܹܰሺ0,  .ଶሻߪ

SARIMA models have been widely and successfully applied to time series forecasting 
over the last thirty years.  By following the three steps of identification, estimation, and 
diagnostics checking, SARIMA models can be fitted to stationary or weakly stationary time 
series data.  

Support Vector Regression Model 

Support Vector Regression (SVR) shares a lot of benefits of the Support Vector Machine (SVM) 
concept which was proposed by Vapnik in 1995.  SVR is based on the structured risk 
minimization principle.  Rather than finding empirical errors, SVR tries to minimize an upper 
bound of the generalization error. Over the last few years, SVR has been employed to solve 
several nonlinear regression problems (22, 23). Mathematically, the SVR model can be described 
as follows: 

Given a set of data points ሼሺxଵ, yଵሻ, ሺxଶ, yଶሻ, … , ሺx୫, y୫ሻሽ ؿ ࣲ ൈ Թ, where ࣲ denotes the 
space of the input patterns and m is the total number of training samples, a linear regression 
function can be stated as fሺxሻ ൌ൏ ߱, ݔ ൐ ൅b with ω א ࣲ, b א Թ where <,> denotes the dot 
product in ࣲ. Assuming an ε െ insensitive loss function (24), a function intended to allow for 
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ignoring errors that fall within a certain band or distance from the true value, the ߱ and b are 
obtained by solving Equation 2 below. 

 minimize ଵ

ଶ
ωTω ൅ C ∑ ሺξ୧

ା ൅୫
୧ୀଵ ξ୧

ିሻ     [Equation 2], 

Subject to ቐ
y୧െ൏ ߱, x୧ ൐ െܾ ൑ ߝ ൅ ξ୧

ା

൏ ߱, x୧ ൐ ൅ܾ െ y୧ ൑ ε ൅ ξ୧
ି

 ξ୧
ା, ξ୧

ି ൒ 0
, 

where, 

 ε ሺ൒ 0ሻ is the maximum deviation allowed, 

 C ሺ൐ 0ሻ is the associated penalty for excess deviation during the training, 

and ξ୧
ା, ξ୧

ି are the slack variables corresponding to the size of this excess deviation for 
positive and negative deviations, respectively.  

In the process of solving this optimization problem, SVR achieves nonlinear regression 
by mapping the training samples into a high dimensional kernel induced feature space, followed 
by linear regression in that space. Since the kernel mapping is implicit (depends only on the dot 
product of the input data vectors), it is possible to map the data to a very high dimension, and 

still keep the computational cost low. Radial Basis Function (RBF) ܭ൫x୧, x୨൯ ൌ exp ቀെγหx୧ െ

x୨|ଶ൯ is one common kernel function.  The parameters of the SVR models, namely the penalty 
factor C and the gamma in the kernel function, are often optimized using the k-fold cross 
validation method (25, 26).  

Combination Forecast Using the Fuzzy Adaptive Variable Weight Method based on Fresh 
Degree Function 

As mentioned above, several researchers have recently proposed combining forecasts from more 
than one model to improve accuracy.  This study used the fuzzy adaptive variable weight method 
based on fresh degree function to do this.  The method is adaptive in the sense that the weights 
assigned to each model, when combining the forecasts, is a function of how well that particular 
model performed on recent forecasts.  Furthermore, the use of the Fresh Degree Function (27), 
F(t), which is usually a function of the time series index, t (e.g., t, or t2 or √t ሻ, allows one to 
weigh the performance on the most recent forecast more heavily than prior forecasts. 
Mathematically, the method proceeds as follows. 

The prediction error of model j at time index i is first computed according to Equation 3 

            e୨ሺiሻ ൌ yሺiሻ െ f୨ሺiሻ       [Equation 3], 

where,             

            e୨ሺiሻ is the prediction error of model j at time i, 
 yሺiሻ is the real value, 
            f୨ሺiሻ is the prediction value of model j, 
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Following this, the method calculates the weighted average absolute prediction error for 
model j using the Fresh Degree function as shown in Equation 4 

a୨ሺiሻ ൌ ∑ Fሺi െ pሻ୯
୮ୀ଴ หe୨ሺi െ pሻหሾ∑ Fሺi െ pሻ୯

୮ୀ଴ ሿିଵ   [Equation 4], 

where, 
            Fሺtሻ, the Fresh Degree Function ൌ  t or tଶ, or √t, t ൌ 1,2, … , s.  

 q = the length of the time series (i.e., the number of previous data points) used to 
calculate the weighted average absolute error, aj(i) based on the Fresh Degree Function. 

Next the method calculates the sum of the absolute prediction error for model j at time 
step i, sj(i), from Equation 5.  In doing so, the method typically uses a length from the time series, 
l, which is typically longer than the length q used in equation [4] above. 

            s୨ሺiሻ ൌ ∑ |e୨ሺi െ pሻ|୪ିଵ
୮ୀ଴       [Equation 5], 

The method then calculates the following; (1) Ej(i), which is the ratio of the weighted 
average absolute prediction error over the past q data points of prediction method j at time 
i, a୨ሺiሻ, to the largest a୨ሺiሻ of all prediction methods, m (i.e., the max aj(i)); and (2) EjA(i), which 
is the ratio of the weighted average absolute error difference over the past q data points of 
prediction method j at time i, , a୨ሺiሻ,  to the largest sum of the ݈ absolute error difference over the 
past l data out of all prediction methods, m (i.e. the max sj(i)), as follows. 

            E୨ሺiሻ ൌ a୨ሺiሻ/ ሾa୨ሺiሻሿଵஸ୨ஸ୫
୫ୟ୶       [Equation 6], 

            EA୨ሺiሻ ൌ a୨ሺiሻ/ ሾs୨ሺiሻሿଵஸ୨ஸ୫
୫ୟ୶       [Equation 7], 

  
Finally, Ej(i) and EjA(i), are combined using equation 8, which was derived based on a 

fuzzy set formulation, where α is another weighting parameter reflecting the importance of the 
more recent forecasts. 

            k෨ ୨ሺiሻ ൌ 1 െ ሾαE୨ሺiሻ ൅ ሺ1 െ αሻEA୨ሺiሻሿ                         [Equation 8], 

The k෨ ୨ሺiሻ are then normalized according to Equation 9, and used to derive the weight, f(i+1), for 
each prediction method, m, at time step (i+1) according to Equation 10. 

k୨ሺiሻ ൌ k෨ ୨ሺiሻ/ ∑ k෨ ୨ሺiሻ୫
୨ୀଵ       [Equation 9],  

fሺi ൅ 1ሻ ൌ ∑ k୨ሺiሻf୨ሺi ൅ 1ሻ, j ൌ 1,2, … , m, i ൌ 1,2, …  ୫
୨ୀଵ                  [Equation 10] 

MODELING DATASET 

Three main International bridges connect western New York and Southern Ontario, Canada over 
the Niagara River, namely the Queenston-Lewiston Bridge, the Rainbow Bridge and Peace 
Bridge. In this report, the focus is on predicting the next hour traffic volume on the Peace Bridge, 
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and specifically traffic entering the United States from Canada.  Hourly traffic volume and 
classification counts for the Peace Bridge, since 2003, can be downloaded from the Buffalo and 
Fort Erie Public Bridge Authority’s website.  In this study, we mainly used the 2009 and 2010 
passenger car traffic data.  The data quality appeared to be excellent with very few hourly traffic 
counts missing (only 9 out of 8760 in 2009 and 7 out of 8760 points in 2010 were missing). To 
complete the time series, the missing data points were replaced with the average of the count 
before and the count after the missing point. Given that there were only few data points that were 
missing, the study did not feel the need to utilize more elaborate imputation algorithms such as 
those described in (28).  However, the data was still pre-processed to identify outliers, if any, that 
can distort the modeling results.  This was done using the Frequent Pattern (FP) Tree algorithm 
as described next. 

Data Preprocessing using Frequent Pattern Tree (FP-TREE) Algorithm 

Due to various reasons, such as detector malfunctions, transmission distortions, traffic accidents 
or other possible influence factors, traffic data sets often contain data points that do not comply 
with the general behavior of the data model.  Those data points are often called outliers and need 
to be detected before the modeling process can start. The outlier detection method used in this 
project utilized the Frequent Pattern Tree (FP-TREE) algorithm (29, 30).  The FP algorithm 
works by first identifying the frequent patterns in the traffic time series.  Patterns are then sorted 
according to their frequencies, and after sorting, the patterns with the least frequencies are 
flagged as suspect for containing outliers.  The algorithm also helps compress the dataset it is 
analyzing, which is an attractive feature, given the relatively large dataset considered in this 
study. 

The first step in applying the FP-TREE algorithm to our dataset involved first condensing 
the time series into a smaller dataset to make the application of the algorithm more practical from 
a computational cost standpoint.  This was done by representing each day-worth of traffic data 
using only those data points within that day that can capture the overall trend of traffic volume 
variation over the 24-hour period.  Specifically, if the hourly volume met any of the following 
conditions, it was kept; if not, the hourly volume was dropped: 

(1) If the hourly volume belongs to the local maximum or local minimum, keep it (31).  
Identifying the local maximum or minimum was performed as follows. If there are indices ݅, ݆, 
and ݉, where ݅ ൏ ݉ ൏ ݆, such that: ܽ௠  is the minimum among ܽ௜, … , ௝ܽ, and ܽ௜/ܽ௠ ൐ൌ ܴ 
and ݆ܽ/ܽ݉ ൐ൌ ܴ. R is set arbitrarily. Here ܴ is set as 2, if the hourly volume is larger than 100, 
otherwise, 2.5. 

(2) If the hourly volume increases or decreases suddenly and the ratio of this hourly 
volume to its forward one is greater than 3 times or smaller than 1/3 times, keep it. 

(3) If the ratio of the hourly volume to the mean of the same time volume of last week 
and two weeks earlier is greater than 2 or smaller than 1/2, keep it. 

After finding and only keeping the most important points of the day, k-means clustering 
method was used to group the volumes of the different days corresponding to each hour of the 
day into 3 clusters, and for each cluster we record the lowest and largest volume value for each 
hour. In other words, after this step, a 24 by 6 matrix is obtained (the 24 rows correspond to the 
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24 hours of the day, and the 6 columns correspond to the lowest and the largest volume value of 
each cluster; because we have 3 clusters for each hour, so for each row of the matrix, there 
should be 6 numbers).  

The next step in applying the FP-TREE algorithm involved determining the number of 
data points (i.e. the data size) in each of the 72 (24*3) clusters. The clusters were then sorted 
according to the data size from the cluster having the largest number of data points to the one 
with the lowest.  The ranking of each cluster thus serves as a measure for of how frequent the 
traffic patterns belonging to that cluster are.  The clusters are now order ranked, and for each 
cluster, a record is kept of the lowest and highest volume range as previously mentioned (i.e. at 
this point, we would have a 72 * 2 matrix, with the row number of each matrix serving as an 
indicator of the rank or frequency of the traffic patterns contained within each cluster). 

 Following this, applying the FP-TREE algorithm involved rewriting the traffic volumes, 
which were kept for each day, in the following manner. For each day (out of the 730 days 
corresponding to the two years considered in this study), each of the traffic volume values of the 
important points retained for that day are checked to identify which cluster in the 72 by 2 matrix 
it belongs to. The rank order of that cluster in the 72 by 2 matrix is then used to replace the actual 
traffic volume value.  After this is done for all the traffic volume values retained for a given day, 
the values (i.e. the rank order) are sorted from the smallest to the largest for that day. For 
example, assume there were three important points or traffic volumes for a given day (say the 
volumes for the 8:00 am, 11:00 am, and 6:00 pm), and assume that the recorded volumes for 
those three hours were 500, 600 and 650 vehicles per hour.  The recorded volumes were checked 
against the 72*2 matrix, and it was determined that they belong to the clusters represented by the 
32nd row, 15th row, and 20th row, respectively.  In that case, we would use ‘32’, ‘15’, and ‘20’ to 
represent the traffic volume recorded for the 8:00 am, 11:00 am, and 6:00 pm.  Finally, after 
sorting, that day would be represented by the vector [15, 20, 32]. 

Now we have a new representation for the 730 days. Beginning with the first point, the 
days which have the same first point are grouped together, and the number of the occurrences is 
registered as count, the first point is called as root node. For the days which have the same root 
node, the algorithm proceeds to find the days which have the same second point and the number 
of occurrences are also counted, and so on. Figure 1 below shows an example.  The number 
before the colon refers to the rank order in the matrix (i.e. the cluster rank which had replaced the 
traffic volume value for the important hours for each day), while the number after the colon 
records the occurrence times (i.e. the frequency) of that order. The traffic patterns for those days 
which only occur 1 or 2 times are finally identified as being suspect for outliers.   
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Figure 1 one Example using Frequent Pattern Tree Method 

When the FP-TREE algorithm was applied to our dataset, there were a total of 47 days 
which were flagged as suspect outliers.  However, when those days were eliminated, the 
accuracy of the prediction models did not improve significantly.  As a result, it may be 
concluded that no significant outliers needed to be eliminated from the dataset, and that the 
quality of the data we were dealing with was very good.   

Data Classification 

As previously mentioned, there are two ways to divide or classify traffic data before 
developing the prediction models: a) the simple method based on the type of the day such as 
weekdays, Fridays, Saturdays and so on; b) more sophisticated methods such as the FCM 
previously mentioned.  Both methods were applied in this study as described below.  

Simple Classification Method 
 
Given that daily traffic patterns vary significantly depending upon the type of the day (i.e. 
weekday vs. weekend vs. a holiday, etc.), the first step in the analysis was to come up with a 
logical classification scheme that would identify the number of distinct traffic patterns or types 
of days.  For each distinct pattern or day type, we would then develop a separate prediction 
model.  Our approach was to try to tie the classification scheme to easily identifiable properties 
of a given day in order to facilitate implementation of the prediction process. 

To do this, we first considered the group of what may be called “ordinary days”, which 
we defined as consisting of all weekdays, excluding Fridays (i.e. Monday through Thursday).  
We also excluded the days which, we suspected, might need separate groups (i.e., holidays and 
game days).  We then calculated the mean hourly traffic volume for each hour of the day, and 
defined an interval of ± 15% of the average hourly volume (15% was chosen based on what may 

1:77 

5: 6 

12:2 24:2 33:2 

24:2 33:1 25:1 
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be regarded as acceptable prediction accuracy for the models).  The traffic patterns of the 
“special” days (i.e. holidays and game days) were then compared to the “ordinary days” to 
determine whether they differed enough to warrant having their own group (i.e., whether they 
lied within the ± 15% band or not).   Figure 2a, Figure 2b and Figure 2c show how two holidays 
(one Canadian and one US) and one day with a US sporting event all have traffic patterns that 
differ from “ordinary days” (i.e. they fall outside the ± 15% band). 

 

Figure 2 Hourly traffic volume at the Peace Bridge on different days 

By following this procedure, the study identified the holidays with traffic patterns that 
differ significantly from “ordinary days”, and a separate group or cluster was defined for those 
holidays. In total there were 22 such holidays in 2009, 5 of which belonged to Canadian holidays, 
while the other 17 days  including three long weekends: Thanksgiving, Christmas and New 
Year’s holidays) were U.S. or common holidays between the two countries.  

For game days, the analysis showed that the days when the Buffalo Sabres’ and Buffalo 
Bills’ games were held, had a significantly different trend from ordinary days.  As a result, a 
separate group was defined for those days for which a separate prediction model was developed.  
In total, there were 50 game days in 2009, 3 of which were also holidays, and 48 game days in 
2010.  

The study also looked at how traffic patterns generally varied with the day of the week.  
Figure 2d plots the average hourly traffic volumes for four additional groups (i.e. weekdays 
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excluding Friday, Fridays, Saturdays and Sundays).  As can be seen, the diurnal distributions for 
these four groups differ significantly and warrant defining separate groups.   

Based on this, six different groups, for which separate prediction models were developed, 
were defined: (1) weekdays excluding Fridays (a total of 181 days in 2009 - only 2009 data were 
used for this group since there were enough data for the analysis); (2) Fridays (35 days in 2009 
and 37 days in 2010); (3) Saturdays (with 38 and 41 days in 2009 and 2010, respectively); 
Sundays (with a total of 83 days in 2009 and 2010); (5) game days (a total of 98 days in 2009 
and 2010); and (6) holidays (a total of 22 days in 2009).  The following section will describe the 
process of model development and evaluation for the first five groups (for holidays, given the 
small data size, a different methodology is being devised based on a case-based reasoning 
approach). Finally, it needs to mention that the data used in the study included traffic volumes 
under non-recurrent events (e.g. accidents, emergencies, inclement weathers, etc.). No attempts 
were made to screen or exclude those data points. 

Fuzzy Classification Method (FCM) 
The second classification method which the study examined was the Fuzzy Classification 
Method (FCM).  The FCM was applied only to the 2009 on a trial basis, to assess the feasibility 
of the application of the method and how its results compared to the simple classification method 
described above.  The first step in applying this method was to first put the hourly traffic 
volumes for the year 2009 in the form of a 21 x 365 matrix as explained below. 

The first 15 rows are the hourly volume from the 7:00 am to 9:00 pm (the traffic volume 
for the other time periods (i.e. from 10:00 pm to 6:00 am) is generally low and therefore 
prediction is not that important for those periods, and hence were excluded from the analysis). 
The 16th row expresses the ratio of the total 15 hours’ volume for the traffic from the US to 
Canada to the 15 hours’ volume of the opposite direction (i.e. from Canada to USA). The reason 
for adding this row or variable is the observation that the difference between the two directions 
traffic volume is significantly larger on holidays and other special days compared to normal days; 
this variable can thus serve as an indicator for those special events. The 17th row is the mean 
value of the 15 hours’ volume from Canada to USA. The 18th row is the peak hour of the day. 
The 19th row is to assign a number for different day of the week, for Monday to Thursday,  ‘1’ is 
assigned, for Friday, ‘2’ is assigned, for the weekend, ‘3’ is assigned. The 20th row represents a 
binary variable to indicate whether there were a Buffalo Sabres or Buffalo Bills game on that day 
(i.e. it assumes a value of ‘1’ if a game were taking place and ‘0’ otherwise).  The 21st row, on 
the other hand, encodes an indicator variable for days surrounding a holiday. That variable takes 
the form of a 5 digit binary code, which is used to represent 2 days before and 2 days after the 
subject day with the 3rd digit representing subject day; holiday-influenced days are coded as 1 
and non-holidays as 0.  

After the matrix was developed, the FCM was applied to analyze the relationship of the 
365 days in 2009. At the end of the process, the method resulted in dividing the 2009 traffic data 
into a total of five clusters: cluster 1 (144 days), cluster 2 (93 days), cluster 3 (74 days), cluster 4 
(32 days), cluster 5 (22 days). It was hoped that the application of the FCM would result in 
clusters that can be identified by readily available identifiers such as day type (i.e. weekday, 
weekend, holiday, etc..).  However, when we checked the nominal characters of the five clusters, 
we found that while cluster 1 was relatively pure, with 135 days out of the 144 days contained 
within it corresponding only to weekdays (Monday to Thursday), there were no clear 
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characteristics to distinguish the other four clusters, which ended up with data from weekdays, 
Fridays, Saturdays, Sundays, Game days and Holidays mixed together.  Given this, the FCM was 
not pursued any further in this research. 

 

MODEL DEVELOPMENT 

Prediction Accuracy Measure 

Two measures were utilized in this study to assess the accuracy of the models developed, namely: 
(1) the Mean Absolute Percent Error (MAPE) as defined in Equation 11; and (2) the Root Mean 
Square Error (RMSE) as in Equation 12.     

             MAPE ൌ ଵ

୬
∑ | A౪ିF౪

A౪
|୬

୲ୀଵ                          [Equation 11], 

 RMSE ൌ ටଵ

୬
∑ ሺA୲ െ F୲ሻଶ୬

୲ୀଵ                         [Equation 12], 

where, 

 A୲ is the actual value and F୲ is the forecast value.  

It is noted however that in calculating both MAPE and RMSE, only the hourly volume from 7:00 
am to 21:00 (i.e. 9 pm) from each day is utilized.  This is because the hourly volume values for 
the other hours (i.e. from 10 pm to 6:00 am) are usually very small (less than 100 vehicles per 
hour), and hence small errors for those hours may result in artificially high MAPE values.     

SARIMA Model 

In this study, the Statistical Package for Social Sciences (SPSS) was used to build the SARIMA 
model. With the data classified into the six groups defined above, the seasonal cycle for each 
model was set to 24, corresponding to the 24 hours in a day.  Because SARIMA models are 
typically used for off-line modeling of time series datasets, a simple procedure was developed to 
allow the SARIMA model to be used for on-line prediction.  This procedure basically involved 
fitting the SARIMA model first using a training data set made of the first part of the time series 
(how the length of the training data was determined will be discussed next), and then 
recalibrating the SARIMA model to update the model parameters after each prediction.  When 
recalibrating the model, the most recent observation is added to the training data set, and the first 
or oldest data point in the training time series is dropped to keep the computational burden of 
model recalibration manageable. This process, which was automated using a syntax file in SPSS, 
results in what may be viewed as a moving window that updates the part of the time series used 
for model calibration. It should be noted that although there are more mathematically rigorous 
methods available to do so (e.g. a state-space representation of the SARIMA model coupled with 
a Kalman Filter (32), the simple procedure described above was deemed adequate for the 
purposes of this study, especially since the computation time required for recalibrating SARIMA 
after each prediction was very short. 
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To determine the appropriate length of the training dataset, different lengths were tried 
and the prediction error on a test set consisting of a total of 888 data points (i.e. 37 days or 20% 
of the total time series for weekdays) was calculated for each length tried.  The results are shown 
in Figure 3a where it can be seen that, for the weekday group, a length of a training dataset 
corresponding to 960 hours (or 40 days) yielded the best performance.   

 

Figure 3 the Parameter Selection of the two Models 

The same procedure was followed to develop the other four models for the other classes 
(i.e. Fridays, Saturdays, Sundays and game days).  Table 1 summarizes the results.  Specifically, 
the table lists the size of the training and test datasets for each model, along with the model’s 
MAPE and RMSE.  As we can see from Table 1, with the exception of the game days, the 
MAPE for the models was between 10% and 11%.  For game days, the MAPE was slightly 
higher (around 15%).  Also note that for SARIMA, the best performance was achieved when 
predicting weekday traffic. 
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Classes Total Dataset Training 
Dataset Length 

Test Dataset MAPE RMSE 

Weekdays (Mon 
Thru Thurs) 

 

4344 (181 days) 960 (40 days) 3384 (141 days) 9.84% 47.95 

Fridays 1728 (35 days in 
2009; 37 days in 
2010) 

960 (40 days) 768 (32 days) 10.28% 64.74 

Saturdays 1896 (38 days in 
2009; 41 days in 
2010) 

720 (30 days) 1176 (49 days) 10.8% 57.60 

Sundays 1992 (42 days in 
2009; 41 days in 
2010) 

720 (30 days) 1272 (53 days) 11.6% 57.38 

Game Days 2352 (50 days in 
2009; 48 days in 
2010) 

1440 (60 days) 912 (38 days) 15.17% 78.91 

Table 1 Prediction Performance of the SARIMA Model 

SVR Model 

For the SVR model, the value of epsilon ε was set as 0.01, and the Radial Basis Function (RBF) 
was chosen as the kernel function. As opposed to the SARIMA model, SVR can be easily 
adapted for on-line prediction.  Specifically, for this study, the input to the SVR model at a given 
time step is a vector, X(t), whose length is B, defined as Xሺtሻ ൌ ሾxሺtሻ, … , xሺt െ B ൅ 1ሻሿT.  The 
SVR would then use X(t) to predict the next data point in the series, X(t+1).  In other words, the 
model would always use the most recent B data points or hours to predict the next hour.  

For the SVR model, the value of the insensitive loss function ሺε ሻwas set as 0.01, and the 
Radial Basis Function (RBF) was chosen as the kernel function. Before using the SVR model in 
this fashion, however, it needs to be calibrated by determining the optimal values for the cost 
factor C and the gamma parameter of the RBF. To do this, a training data set similar to the one 
used in conjunction with the SARIMA model, needed to be defined; we use the letter O to refer 
to the length of the training dataset.  Moreover, to improve accuracy, we recalibrate the SVR 
model (i.e., determine new values for C and gamma) every P hours (P=120 hours in this study).  
The reason the SVR model is only recalibrated every 120 time steps and not after each prediction 
as was the case with SARIMA, is that the calibration process is computationally extensive and 
hence cannot be practically performed after each prediction.  Once again, to keep the size of the 
training data set, O, fixed, we adopted a moving window strategy which replaces the first P data 
points in O with the latest P points added. 

To determine appropriate values for both B and O, the values of those two parameters 
were varied, and the MAPE for a total of 10 days was calculated for each combination.  Figure 
3b shows the results from these experiments performed on the weekday class. As can be seen, 
the combination of B=6 and O=1440 appears to yield the smallest prediction error. Given this, 
these values were the ones adopted for that class. 

Table 2 shows the results of the SVR predictions for the five classes, along with the size 
of the calibration or training dataset (O) and the test dataset adopted for each class.  As can be 
seen, the MAPE for the SVR ranged from 9.42% to 13.62%.  A very interesting observation 
regarding the SVR model performance is that the smallest prediction error for SVR (MAPE of 
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9.42%) was that corresponding to the game day model.  This is in stark opposition to the 
SARIMA model where the game day SARIMA model had in fact the largest MAPE (15.17%).  
The RMSE of the game day SVR model is also lower than that in SARIMA model. This in turn 
tends to support the observation made earlier that traditional time series, given its assumption of 
linear correlation among the data points, may face difficulties when dealing with the non-
linearity of complex patterns such as those observed on game days.  For such patterns, the SVR 
paradigm appears to provide better performance.  Again this tends to reinforce the benefits of 
multi-model combined forecasts as will be discussed in the next section. 

Classes Total Dataset The 
Prediction O  

Input 
Dimension B 

Test Dataset MAPE RMSE 

Weekdays (Mon 
Thru Thurs) 

 

4344 (181 days) 1440 6 2904 (121 days) 10.37% 49.64 

Fridays 1728 (35 days in 
2009; 37 days in 
2010) 

1440 7 288 (12 days) 9.87% 58.28 

Saturdays 1896 (38 days in 
2009; 41 days in 
2010) 

1440 6 456 (19 days) 12.50% 64.23 

Sundays 1992 (42 days in 
2009; 41 days in 
2010) 

1440 6 552 (23 days) 13.62% 57.03 

Game Days 2352 (50 days in 
2009; 48 days in 
2010) 

1440 6 912 (38 days) 9.42% 52.17 

Table 2 Prediction Performance of the SVR Model 

Multi-model Combined Forecasting Method 

The comparison of the SARIMA and SVR model results with the observations indicates that 
each model appears to have its own set of strengths and weaknesses. For example, the SARIMA 
model is good at handling the linear characteristics of the data, such as seasonality and trend, 
whereas SVR is capable of capturing the nonlinear characteristics.  Given this, this section 
develops methods to combine forecasts from the two models to improve the quality and accuracy 
of the predictions. 

Specifically, two methods for combining the forecasts from the two models were 
investigated.  The first method, called the simple or fixed weight method, simply compares the 
performance of each model (i.e. SARIMA and SVR) for predicting a specific hour of the day 
(e.g. 7:00 am or 8:00 am, etc.), over the whole training dataset.  If for example there were more 
instances in which SARIMA performed better than SVR for the 7:00 am volume prediction, 
SARIMA is selected for all future predictions for the 7:00 am hour (i.e., the weight assigned for 
SARIMA in this case would be 1, and for SVR  0).  Our analysis of weekday predictions, for 
example, showed that SARIMA appeared to be the better model for 7 and 8 am, and for 2, 3, 6, 8 
and 9 pm.  For the remaining hours, SVR was the better model. 

The second method is the Fuzzy Adaptive Variable Weight method as previously 
described. When applying this method, the Fresh Degree Function, F(t), was assumed to be equal 
to t2.  It should be noted that in this method the performance of the model for predicting a given 
hour, say 7 am, is evaluated based on the model’s performance in predicting that same hour over 
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the past few days and not on the model’s performance over the past few hours of that day (i.e., 
the t index of F(t) is an index referring to the day number or sequence).  This is because, as 
mentioned before, each model outperforms the other for predicting certain hours of the day.  
With respect to the other parameters of the weight method, q in Equation [4] was set to 3, the 
moving window length ݈ in Equation [5] was set to 5, and the values of α in Equation [8] were 
set to 0.84, 0.7, 0.75, 0.84, 0.84 for the weekdays, Fridays, Saturdays, Sundays, and Game days, 
respectively; those α values were chosen after trying many different values and picking the ones 
with the best performance. 

Table 3 shows the magnitude of the improvement in the quality of the forecasts of the 
SARIMA and SVR models when their forecasts are combined using both the simple fixed weight 
method and the fuzzy adaptive weight method (for each class, the first five days were used to 
calculate the weights for the fuzzy adaptive weight method and performance was evaluated on 
the remainder of the dataset).  

 Two important observations can be made with regard to Table 3.  First, it is clear that 
both methods for combining the results appear to improve the quality of the results.  Specifically, 
for all 5 classes and for the two combining methods, the combined multi-model forecast is better 
than the single model forecast (with the exception of only the fixed weight method when used on 
the game day group, where the combining method results are better than SARIMA but worse 
than SVR). The second observation is that the fuzzy adaptive variable method clearly 
outperforms the simple weight method, and appears to yield a dramatic improvement in the 
quality of the results. Specifically, with the fuzzy adaptive variable method, the MAPE for all 5 
classes is in the range of only 6% or 7%, and the RMSE for all 5 classes is lower than 45.   

 MAPE RMSE 
SARIMA SVR Fixed 

Weight 
Variable 
Weight 

SARIMA SVR Fixed 
Weight 

Variable 
Weight 

Weekdays 
(35 days) 

10.10% 9.37% 7.80% 6.32% 99.60 48.95 74.88 37.49 

Fridays 
(12 days) 

10.09% 9.78% 8.36% 7.68% 57.42 51.55 47.49 43.49 

Saturdays 
(19 days) 

10.84% 11.80% 9.49% 7.59% 60.00 56.44 77.37 39.07 

Sundays 
(23 days) 

11.55% 12.23% 10.59% 7.65% 59.54 52.42 53.59 39.38 

Game days 
(38 days) 

15.31% 8.58% 11.93% 7.32% 79.94 48.52 64.60 43.73 

Table 3 Models’ Prediction Performance Comparison 

For a more disaggregate view of the performance of the models, Figure 4 below 
compares the traffic volume predicted by SARIMA, SVR and the combined forecasting method, 
against the field observed values for a period spanning a total of 60 hours.  As can be seen, for 
some hours (e.g. those inside circle A), SARIMA outperforms SVR, whereas for other hours (e.g. 
inside circle B), SVR performs better than SARIMA.  By combining the two methods, the final 
forecast is generally quite closer to the observed values (with naturally a few exceptions such as 
the hour enclosed by rectangle C). 

C

Classes 

Criteria 
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FIGURE 4 Traffic volume predictions of SARIMA, SVR, and the combined forecasting 
method with variable weight  

CONCLUSIONS AND FUTURE WORK 

In this part of the study, a multi-model combined forecasting method, combining forecasts from 
SARIMA and SVR, was proposed and used for the on-line prediction of hourly traffic volumes 
at the Peace Bridge in Western New York. By combining traditional time series analysis with 
SVR, the study managed to take advantage of the known strengths of time series analysis, while 
compensating for its weaknesses in capturing the non-linear aspects of the data, a phenomenon 
which AI-based methods such as SVR are known to be capable of capturing. Besides that, the 
study also applied the FP-TREE algorithm to preprocess the data and identify any outliers.  We 
also experimented with the FCM method to classify the data.  Among the main conclusions and 
lessons learned from that part of the study are, 

(1) The accuracy of border crossing short-term volume forecasts is improved by classifying 
the volume data into groups and developing separate prediction model for each group.  In 
this study, a convenient classification scheme involved dividing days into the following 
six groups: weekdays excluding Fridays, Fridays, Saturdays, Sundays, game days, and 
holidays. 

(2) The SVR method appears to outperform SARIMA when predicting traffic volumes on 
special days (e.g. game-days), whereas SARIMA performs better than SVR during 
normal days (e.g. the weekday group).  This is consistent with the known strengths and 
weakness of the two methods, namely the ability of SARIMA, as a linear modeling 
approach, to capture seasonality and trend versus SVR superior ability to capture 
nonlinear effects. 

(3) While the performance of both SARIMA and SVR methods on the border crossing traffic 
volume prediction problem appears acceptable, the accuracy is significantly improved by 
combining the forecasts from the two methods as demonstrated by the results shown in 
Table 3 and Figure 4. 
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(4) For combining the SARIMA and SVR forecasts, the Fuzzy Adaptive Variable Weight 
method appears to outperform the simple fixed weight method as indicated by Table 3.     

 Several future research directions are suggested by the current work.  First, the authors 
plan to investigate the benefits of incorporating traffic volumes from upstream links into the 
prediction process to improve accuracy and allow for extending the prediction horizon.  We also 
plan to test the transferability of the approach to other border crossings.  A second possible 
future research area involves dynamically estimating confidence bounds for the volume forecasts, 
which gives a measure of the reliability of the forecast.  Finally, the authors plan to incorporate 
the prediction models developed into a decision support system for optimally routing border-
destined traffic. 

PART II AN INVERSE STEADY-STATE ࢉ/ࡹ/ࡹ QUEUEING MODEL to ESTIMATE 
the DELAY 
 
LITERATURE REVIEW 
 
When vehicles arrive at the border, the process of waiting and going through inspection and 
customs can be described as a typical queueing system. Given this, the focus of this second of 
the study was to develop queueing models for estimating the delay which the customers (i.e. the 
vehicles) in such a queueing system would encounter.  Queueing models can be generally 
represented using Kendall’s notation (33): A/B/S/K/N/D,  

Where,  

A is the inter-arrival time distribution,  
B is the service time distribution,  
S is the number of the servers,  
K is the system capacity,  
N is the calling population, 
D is the service discipline assumed. 
  

In many cases, it is often assumed that the queueing systems of interest have infinite capacity 
and that the calling population is also infinite.  Moreover, it is often assumed that the queueing 
systems follow the First-In First-Out service discipline.  In such cases, the notation becomes 
simply A/B/S. Some standard notations for distributions (A or B) are: 
 

M for a Markovian (poisson, exponential) distribution,  
 ,for an Erlang distribution with k phases ࢑ࡱ
D for degenerate (or deterministic) distribution (constant), 
G for general distribution (arbitrary),  
PH for a phase-type distribution. 

 
A few previous studies could be identified from the literature that applied queueing theory to 
traffic operations at border crossings and toll plazas.  For example, Kim (34) proposed an M/G/1 
queueing model for designing a new toll plaza.  Kim then solved the model using a non-linear 
integer programming method, and determined the optimal dynamic lane configuration for 
operations. Takagi and Wu (35) also constructed a queueing model with multi-servers and semi-
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Markovian batch arrivals, and derived the distributions of the queue size and the waiting time. 
Ausin et al. (36) considered the problems of designing a GI/M/c queueing system. Their goal 
was to calculate the optimal number of servers so as to minimize an expected cost function 
which depended on variables such as the number of customers in the queue. Gupta (37) 
estimated the air traffic delays at airports using transient queuing models, including Dሺݐሻ/ܯሺݐሻ/
 ሻ/1, and then compared the estimated delaysݐሺܯ/ሻݐሺܯ ሻ/1, andݐሺܦ/ሻݐሺܯ ,ሻ/1ݐሺܦ/ሻݐሺܦ ,1
from different models. Gontijo et al. (38) estimated arrival intervals’ distribution using Kernel 
estimation, and developed a ܫܩ௑/ܯ/ܿ/ܰ system.  Based on this, they calculated the distribution 
of the number of customers in the system, the average queue size, and the average waiting time. 
Finally, Park et al. derived a queueing model with observable arrival and departure times, but 
with the number of the service stations unobservable (39).   

MODELING METHODOLOGY BACKGROUND 

One unique aspect of the current study which we briefly alluded to before, is the fact that the 
hourly volumes predicted above are outgoing volumes (i.e. volumes leaving the border customs 
and inspection stations), and not incoming volumes.  Given this, we needed to build and solve an 
inverse M/M/c queueing model in order to estimate the average delay.  In that model, it is 
assumed that arrivals follow a Poisson distribution (however, the average arrival rate ࣅ rate is not 
known).  It is also assumed that the system has c service stations whose service times follow 
exponential distribution with the average service rate as µ. We refer to the model here as an 
“inverse” model, since what is available for us is the output of the system (in terms of the 
number of vehicles departing), and not the input (i.e. the arrival rate, ࣅ).  The solution of the 
inverse queueing model would provide the average delay along with an estimate for the arrival 
rate as well.   The following paragraphs describe how the solution to this problem was derived 
(40). 

 
First let us assume that ࡺሺ࢚ሻ denote the number of customers (i.e. vehicles) in the system 

(the number in the queue plus the number being served, if any) at time t measured from a fixed 
initial moment (t=0).  Given this, the probability of having n customers in the system at certain 
time moment can be expressed as: 

 
 ௡ܲሺݐሻ ൌ Prሺܰሺݐሻ ൌ ݊ሻ , ݊ ൌ 0,1,2, …                                         

 ௜ܲሺ0ሻ ൌ 1, ሺ ௝ܲሺ0ሻ ൌ 0, ݆ ് ݅ሻ                                                [Equation 13],                                             

where the number of customers at the initial moment is denoted by ࢏ (where ࢏ could be 0, 1, 2, 
…). 
 
For a complete description of the stochastic behavior of the queue-length processesሼࡺሺ࢚ሻ, ࢚ ൒
૙ሽ, the time-dependent solution, ࢔ࡼሺ࢚ሻ, ࢔ ൒ ૙, needs to be determined.  Finding this solution, 
however, is often quite challenging for transient queues (i.e. systems that consider the time 
dimension).  To simplify the formulation here, we assume steady state conditions and attempt to 
derive the equilibrium solution which assumes that the system has been in operations for a long 
time and has reached a steady state.  With this assumption, the formulation proceeds as follows 
(40): 
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࢔ࡼ              ൌ ՜ஶ࢚ܕܑܔ      ,ሻ      [Equation 14]࢚ሺ࢔ࡼ
As previously stated, the number of the vehicles in the system under steady state ࢔ࡼ is 

the value of ࢔ࡼሺ࢚ሻ when ࢚ ՜ ∞. 
 
For a queueing system with ࢉ servers, in order that steady state exists, the ratio of the 

arrival to the service rate, denoted by ࣋, has to be less than 1.0, as expressed by Equation [15] 
below: 

  
࣋ ൌ    ,μ ൑ 1.0      [Equation 15]ࢉ/ࣅ
 
Under the steady state, we can derive the probability that the queueing system has no 

vehicles, ࡼ૙, as shown below: 
 

૙ࡼ ൌ ሾ∑
ቀࣅ

ಔ
ቁ

࢔

!࢔
൅

ቀࣅ
ಔ

ቁ
ࢉ

ቀ૚ି!ࢉ ࣅ
ಔࢉ

ቁ
૚ିࢉ
ୀ૙࢔ ሿି૚     [Equation 16], 

 
With ࡼ૙ determined, the probability that the queueing system has ࢔ vehicles (denoted 

by࢔ࡼሻand the probability that the queueing system has more than ࢉ vehicles ሺ࡯ ሻcan be 
determined as below (40): 

࢔ࡼ ൌ ሺࣅ/ஜሻ࢔

!࢔
   ,૙       [Equation 17]ࡼ

࡯ ൌ ࢔ሺ࢘ࡼ ൒ ሻࢉ ൌ ∑ ࢔ࡼ ൌஶ
ࢉୀ࢔

ቀࣅ
ಔ

ቁ
ࢉ

ቀ૚ି!ࢉ ࣅ
ಔࢉ

ቁ
   ,૙     [Equation 18]ࡼ

 
 Now, for a steady-state queueing system, we can say that the expected number of 
vehicles in the queueing system, E(N), is equal to the sum of the expected number of vehicles 
being served, E(B), and the expected number of vehicles in the queue, E(Q), as shown in 
equation [19] now.  The expected number of vehicles being served, E(B), is equal to ࣋ࢉ, whereas 
the expected queue length for an M/M/c queueing system can be expressed as ࡯࣋/ሺ૚ െ  ,ሻ࣋
where C can be estimated from Equation [18] above.  In other words, the expected number of 
vehicles in the queueing system, E(N), is given by Equation [19] below (40): 

 
ሻࡺሺࡱ ൌ ሻ࡮ሺࡱ ൅ ሻࡽሺࡱ ൌ ࣋ࢉ ൅ ሺ૚/࡯࣋ െ    ,ሻ   [Equation 19]࣋

 
 Now, suppose that the queueing system is in steady state at time point ࢚, the following 
equation should exist: 
 

ሻࡴࡺሺࡱ ൅ ࡴࢂ ൌ ࡴࣅ · ࢎ ൅     ,[Equation 20]     ࢚ࡺ
 
where,  
 
  ࢚ refer to the number of vehicles in the system (i.e. in queue or being served) at time ࡴࡺ and ࢚ࡺ
and in the next hour, respectively; ࡴࢂ is the outgoing traffic volume from the border inspection 
stations during the next hour that we have predicted; ࡴࣅ is the arrival rate; ࢎ ൌ ૚ and therefore 
 h captures the total number of vehicles arriving during the one hour under consideration.  The.ࡴࣅ
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basis of equation [20] is obvious conservation of flow.  The number of vehicles at the beginning 
of the hour, N(t), plus the number of vehicles arriving during that hour .h, should be equal to 
the number of vehicles that departed during that hour, VH, plus the number of vehicles left in the 
system at the end of the hour E(NH).  In Equation 20, the only unknown in our case is the arrival 
rate , and therefore Equation [20] can be used to calculate .  Once  is calculated, we can 
calculate the average delay in the queue  and the average delay in the system,  
using the M/M/c appropriate equations as shown below (40):,  
 

       [Equation 21],   

      [Equation 22],   

 
The difference between  and  is obviously that the latter also considers the 
service time. 
 
EXAMPLE 
 
In this part, we will show how to predict the border delay based on the equations derived above, 
using the “Solver” tool in Excel 2010. 

 
 
 

Figure 5 Border Delay Estimation using Solver in Excel  
 
In the Figure 5, the variables highlighted with the yellow color are assumed to be known, 

the output volume predicted to be processed over the next hour is 500 vehicles (this should have 
been predicted by the prediction models developed in the first part of this research), the number 
of the servers or customs and inspection stations is 7, the service time follows an exponential 
distribution with a mean value of 0.0125 hours, and the vehicle number in the system at the 
beginning of  which would satisfy Equation [20].  In Excel, this is formulated as an objective 
function which we are seeking to satisfy (object), subject to the constraint that the ratio of arrival 
to service rate,  has to be less than or equal to 1. As can be seen the objective function is 
basically a transformation of Equation [20].   
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For this example problem, the arrival rate is estimated to be equal to 557.8 ࢎ/ࢎࢋ࢜.  With 

this, we then proceed to calculate the average delay in the queue ࡱሺࡽࡴࡰሻ ൌ ૙. ૝૞ࢎ ൌ ૛ૠ࢙࢔࢏࢓ 
and the average delay in the system ሺࡿࡴࡰሻ ൌ ૙. ૝૟ࢎ ൌ ૛ૠ. ૟࢙࢔࢏࢓. 
 
CONCLUSIONS AND FUTURE WORK 

In part II, we proposed a an inverse M/M/c queueing model to calculate the expected border 
crossing delay based on the predicted hourly traffic volume in part I.  The formulation presented 
should be regarded as the first step that the authors intend to refine in the future.   Specifically, 
the formulation makes the following three assumptions, which we intend to relax or address in 
the future: 

(1) One key assumption in the formulation above is that the system is under steady-state 
conditions.  In reality, queues at the border are transient or dynamic; this is a research 
topic we plan to hopefully pursue in the future.  Moreover, the constraint that ߩ ൑ 1 may 
not hold true, especially when short time intervals are considered. 

(2) The formulation above assumes that the number of vehicles in the system at the 
beginning of a given hour is known. From a practical standpoint, that value may not be 
known, although it could be estimated based on the length of the queue. 

 (3) The formulation assumes that the distribution of the arrival and service processes 
exponential.  Although such an assumption is very common in queueing theory work, in 
the future we plan to collect some real-world data to verify that assumption.   
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