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Compression and Mining of GPS Trace Data:  

New Techniques and Applications 
 

ABSTRACT 

 

The massive volumes of trajectory data generated by inexpensive GPS devices have led to 

difficulties in processing, querying, transmitting and storing such data.  To overcome these 

difficulties, a number of algorithms for compressing trajectory data have been proposed.  These 

algorithms try to reduce the size of trajectory data, while preserving the quality of the 

information.   We present results from a comprehensive empirical evaluation of many 

compression algorithms including Douglas-Peucker Algorithm, Bellman's Algorithm, STTrace 

Algorithm and Opening Window Algorithms. Our empirical study uses different types of real-

world data such as pedestrian, vehicle and multimodal trajectories.  The algorithms are compared 

using several criteria including how well they preserve the spatio-temporal information across 

numerous real-world datasets, execution times and various error metrics.  Such comparisons are 

useful in identifying the most effective algorithms for various situations. We also provide 

recommendations for a hybrid algorithm which can leverage the strengths of various algorithms 

while mitigating their drawbacks. 

 

 

INTRODUCTION 

  

Data generated from GPS units are commonly used in a variety of business and public section 

applications, such as supply-chain management and traffic modeling [11,13,23,8,16]. These 

efforts are being hampered by the sparse nature of some data collection strategies, the sheer 

volume of the data, and technical issues associated with the use of the data.  The enormous 

volume of data can easily overwhelm human analysis.  If data is collected at 10 second intervals, 

a calculation due to Meratnia and By [17] shows that without any data compression, 100 Mb of 

storage capacity is required to store just over 400 objects for a single day.  This motivates the 

need for automated methods to compress and analyze the data.  As a result, database support for 

storing and querying GPS traces is an area of active research [1,2,29,17].  

 

Compression strategies can be classified into two forms, namely lossless and lossy compression.   

Lossless compression enables an exact reconstruction of the original data; that is, no information 

is lost due to compression.  In contrast, lossy compression introduces inaccuracies when 

compared to the original data. The primary advantage of lossy compression is that it can often 

reduce the storage requirements drastically while maintaining an acceptable degree of error.     

 

The most native method of lossy compression, namely uniform sampling, offers the advantages 

of time efficiency and reduced storage requirements for geo-spatial data. This approach down-

samples a stream of GPS data at fixed time intervals; that is, from the original data consisting of 

a series of time-stamped points (x,y,t), every ith point is kept  in the compressed version, for 

some suitable integer i.    

 

Uniform sampling can reduce the storage requirements, but often results in significant loss of 

information.  The aim of compression techniques is to minimize storage requirements for the 
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GPS data, while maintaining as much useful information as possible.  Various algorithms exist in 

the literature to balance the tradeoff between accuracy and storage size. These algorithms can be 

logically grouped based on criteria such as batch vs. online processing and the error metrics that 

measure information loss.  

 

Transportation mode is defined as the method of traveling between locations (e.g, walking, 

bus, rail or airplane). The characteristics of a GPS trace (changes in direction, accuracy, speed 

and acceleration) differ substantially based on the transportation mode of moving object. For 

example, pedestrians walking in an urban setting exhibit a drastically different movement pattern 

when compared to buses traveling along a predefined route.  Pedestrian data typically contains 

frequent changes in direction and less accurate location readings, based on the urban canyon 

effect that causes inaccuracies.  The effectiveness of a compression technique varies with the 

characteristics of the data being compressed. Frequent, often unpredictable changes in movement 

are difficult to compress with high accuracies; conversely, traces that contain high degrees of 

redundancy (e.g. a vehicle traveling at a consistent speed on a highway) can be compressed 

significantly without introducing large amounts of error.   

 

In this empirical study, we identify three data profiles based primarily on the transportation 

mode: buses, urban pedestrians and multimodal travel (involving modes such as walking, 

vehicle, subway or rail).   Understanding how well each algorithm compresses traces from 

different transportation modes assists in matching the appropriate compression technique to 

business and organizational requirements.  

 

Various metrics have been previously defined in the literature to measure the information loss 

associated with compression. However, to the best of our knowledge, no previous work has 

compared these metrics across a wide range of compression algorithms and across different 

transportation modes.  In this research, seven different compression algorithms described in the 

literature are compared on the basis of their actual execution times as well as several error 

metrics.  These metrics allow the determination of the strengths and weakness of each algorithm 

on the different transportation modes.   As discussed later, our empirical study also provides 

some guidelines for developing hybrid algorithms that intelligently identify segments of GPS 

traces that are best suited for particular algorithms.  

 

Our main contributions can be summarized as follows: 

 

 We carry out a comprehensive empirical comparison of a number of known compression 

algorithms using real-world GPS traces that represent various travel modes (pedestrian, 

bus and multimodal). 

 

 Our evaluation of the compression algorithms is based on a number of different error 

metrics such as synchronized Euclidean distance, speed and heading (defined in Section 

2) as well as actual execution times 

 

 Our results provide guidelines for choosing a compression algorithm that is best suited to 

meet organizational and technical requirements based on the characteristics of the GPS 

data collected.  
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 Our empirical results also allow us to develop broad recommendations for developing a 

hybrid algorithm which can leverage the strengths of various algorithms while mitigating 

their drawbacks. 

 

 

The remainder of this paper is organized as follows. The next section describes the various 

metrics found in the literature for measuring the information loss due to compression.  Section 3 

provides an overview of the compression algorithms considered in this paper. Section 4 describes 

the characteristics of the data used in this research.  Section 5 uses the experimental results to 

carry out a detailed comparison of the various algorithms. Section 6 provides additional 

discussion of the results, recommendations for developing hybrid compression schemes and 

choosing the best available compression technique to meet organizational goals. Directions for 

future work are provided in Section 7  

 

 

2. TRAJECTORY-SPECIFIC INFORMATION 

 

GPS trajectories do not consist only of spatial data (latitude, longitude); crucially, the temporal 

component t, is also stored along with the spatial location (x,y). The three components define a 

series of time-stamped positions (x,y,t).   GPS devices also can record the speed and heading 

(defined as the direction of travel) of a moving object.    We use the word ``asset" to refer to a 

moving object following the practice in transportation literature. When evaluating the 

effectiveness of each algorithm, both spatial and temporal accuracy must be measured. 

Applications using stored GPS data, often require the preservation of the spatial component 

(where was the asset?), the temporal component (when was the asset at that location?), as well as 

speed and heading information (how fast and in which direction was the asset traveling?).   

Preserving the speed and heading information is particularly important in some applications.  For 

example, in fleet monitoring applications, logistics managers often want to know how safely the 

drivers are operating tractor-trailers. The information needed by the managers includes the 

following: whether the drivers are operating above the speed limit, whether they are hitting the 

brakes hard (acceleration) and whether they are driving erratically (heading).   Logistics firms 

have been the most eager to use this new technology, since they often have hundreds or 

thousands of vehicles on the road; such firms have a vested interest in flagging drivers  who are 

subjecting the trucks to unnecessary strain  and causing safety problems for other motorists.   

 

Additionally, certain queries that use trajectories as input, often require accurate approximations 

of speed.  These data mining applications include detecting travel mode [28] and trip purpose 

[25].  Determining travel mode relies heavily on speed, since many modes can be eliminated 

based on the speed of travel. For instance, it is obvious that an individual is not walking if the 

estimated speed is 50 mph.  Another example is trip purpose detection, which is defined as the 

reason or activity performed by an individual at a specific location (e.g. shopping, work or 

school).    Since speed is very useful in inferring the mode of travel to a destination, determining 

trip purpose often relies on good speed estimates.   
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Queries that involve detecting patterns between multiple trajectories sometimes use the heading 

information to establish relationships and connections.  For example, detecting single file 

movement [5], uses heading information to determine whether or not a group of entities is 

moving in single file (i.e., if they are following each other, one behind the other).  This is a 

movement pattern that occurs often among animals, vehicles and humans.    

 

 
Figure 1: Synchronized Euclidean Distance measures the distance between the original and 

compressed trace at the same time. In contrast, line generalization algorithms ignore the 

temporal component and use simple perpendicular distance.  

 

 

One way of measuring the difference between a GPS trace and its compressed version is to 

measure the perpendicular distance (Figure 1).  Since the perpendicular distance does not 

incorporate temporal content, a more effective approach involves measuring the distance at 

synchronized points.   For instance, Figure 1 shows the distances at synchronized time points t2, 

t3 and t4. (At time t3, the time synchronized distance and the perpendicular distance coincide.)  

 

  

2.1 Trajectory-Specific Error Metrics 

 

Algorithms for compressing GPS trajectories attempt to minimize one or more of the following 

error metrics: spatial distance, synchronized Euclidean distance (sed), time-distance ratio, speed 

and heading. Table 1 lists the seven algorithms compared in this study, along with their worst-

case running times and the metric(s) they attempt to minimize.  The metrics considered by the 

algorithms serve as a logical mechanism for distinction and classification. Details regarding 

these algorithms are presented in the next section; here, a description of the error metrics is 

provided.    
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Table 1: Summary of GPS Trajectory Algorithms 

 

As will be seen in Section 3, the algorithms of Douglas-Peucker and Bellman are forms of line 

generalization algorithms that are often used in computer graphics applications for reducing the 

complexity and storage requirements of curves.   Additional line generalization algorithms 

include Bezier curves, NURBs curves or cubic splines.  A common characteristic of all these 

algorithms is that error is measured only in terms of the spatial distance between the original 

curve and the approximation.   

 

Synchronized Euclidean distance (sed) measures the distance between two points at identical 

time stamps [21]. In Figure 1, five time steps (t1 through t5) are shown.  The simplified line 

(which can be thought of as the compressed representation of the trace) is comprised of only two 

points (P't1 and P't5); thereby, it does not include points P't2, P't3 and P't4.  To quantify the error 

introduced by these missing points, distance is measured at the identical time steps. Since three 

points were removed between P't1 and P't5, the line is divided into four equal sized line segments 

using the three points P't2, P't3 and P't4 for the purposes of measuring the error.   The total error is 

measured as the sum of the distance between all points  at the synchronized time instants, as 

shown below.  (In the following expression, n represents the total number of points considered.)  

 

 
 

Another trajectory metric is the Meratnia-By time-distance ratio [17], which uses both spatial 

and temporal information to determine whether to store or discard points. The temporal 

component is the ratio of two time intervals: the travel time across the original trajectory and the 

travel time across the approximation.  The spatial component is the positions of discrete points 

from both trajectories. Various compression techniques such as the opening window algorithms 

OPW-TD and OPW-SP, and the modified version of Douglas-Peucker TD-TR, use the Meratnia-

By time-distance ratio in order to select points for compression.  
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3. OVERVIEW OF COMPRESSION ALGORITHMS 

 

3.1 Douglas-Peucker Algorithm 

 

The Douglas-Peucker Algorithm [9] is a popular heuristic, commonly used to fit a series of line 

segments to a curve, thereby reducing storage requirements.  Often implemented in computer 

graphics applications, the Douglas-Peucker algorithm is applicable in a variety of geospatial 

applications. A common application is in reducing the number of points required to store state 

and county boundaries.   

 

 
 

Figure 2: Douglas-Peucker Line Generalization Algorithm recursively fits a series of line 

segments to the original curve by selecting the furthest point. 

 

 

Douglas-Peucker is a line generalization algorithm, that recursively selects points from the 

original set of GPS trajectory points.  A series of line segments is fitted to the original curve 

based on new points that are selected.  The execution of the algorithm proceeds along the 

following steps.  To begin with, the first and last points in the trajectory are stored in the 

compressed version. Together, these two points form a line segment, as shown in Figure 2(a). 

Next, a point with the maximum distance from the line segment L1 is selected; this point, along 

with the start and end points from the compressed representation at the end of the first iteration. 

In Figure 2(b), the newly added point is used along with the start and end point to form two line 

segments labeled L1.1 and L1.2. This process is repeated using recursion on each line segment.  

The algorithm halts when the maximum distance between the original trajectory and the line 

segments is below a user defined tolerance.  

 

If the above algorithm is implemented in a straightforward manner, its worst-case running time  

is O(n
2
), where n is the number of original points.  The running time can be improved to 

O(nlog(n)) using a more complex approach involving convex hulls [12].   
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Figure 3: Douglas-Peucker Line Generalization Algorithm approximating a GPS 

Trajectory. 

 

 

3.2 Modified Douglas-Peucker (TD-TR) 

Despite the popularity of line generalization algorithms for a wide range of applications in 

cartography and computer graphics,  Meratnia and By [17] indicate that line generalization 

algorithms such as Douglas-Peucker (shown in Figure 3) are not suitable for GPS trajectory data 

since both spatial and temporal data should be taken into account.    

 

 

To measure the error more accurately, Meratnia and By [17] defined the time-distance ratio 

metric discussed in Section 2. In this metric, the difference between the original trace and 

compressed trace is evaluated using the differences in both distance and time.  To fit the dataset 

more accurately, an algorithm called TR-TD [17] modifies the distance formula of the Douglas-

Peucker algorithm to utilize the temporal component of the trajectory data stream.  The modified 

distance is used in compressing the trace in a manner similar to the Douglas-Peucker algorithm 

described in the previous section.   

 

3.3 Opening Window Algorithms 

Similar to the Douglas-Peucker and TD-TR algorithms, Opening Window Algorithms fit 

numerous line segments to the original GPS trajectory data. Two points are used to fit each line 

segment: the first point in the series, called the anchor, and the third point in the series called the 

float.  If the distance between the original and the compressed sequence is greater than the 

defined error tolerance, than either the point causing the maximum error is added to the 

compressed series (Normal Opening Window Algorithm or NOWA) or the point just before the 

one that causes the maximum error is added (Before Opening Window or BOPW).   If the 

threshold is not violated, the float slides forward to each subsequent point in the GPS trace until 

either a violation occurs or the end of the trace is reached.    

 

The standard implementation of Opening Window Algorithm is unsuitable for compressing GPS 

traces because essential information such as temporal data is ignored.  To effectively use a 
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version of the opening window algorithm, the error metric needs to be modified to incorporate 

spatiotemporal information and not just the spatial characteristics. The algorithm OPW-TR [17] 

is a modified opening window algorithm that incorporates both the spatial distance and the 

temporal distance (time-distance error ratio) to determine when the error threshold is violated.  

Another algorithm called OPW-SP (also discussed in [17]) is similar to OPW-TR except that an 

additional condition is included when deciding whether or not to add a point.  This condition 

allows a new point to be added when the speed error introduced is greater than a user-defined 

tolerance.    

 

3.4 Bellman’s Algorithm 

 

Bellman's algorithm, based on dynamic programming [4,3], also fits a sequence of line segments 

to a curve. The solution produced by the algorithm is provably optimal; the algorithm minimizes 

the root mean square (RMS) error under specific conditions. Therefore, Bellman's algorithm can 

be thought of as providing a very accurate compression of the GPS data, preserving the most 

important information.   A straightforward implementation of the algorithm has a worst-case 

running time of O(n
3
), where n is the number of points in the trajectory.   This is a serious 

drawback when large traces must be compressed. Using additional storage, the running time of 

the algorithm can be reduced to O(n
2
) [14].  

 

The input to Bellman's dynamic programming algorithm is a series of latitude and longitude 

points that can be taken directly from the GPS loggers.   An additional positive value C, which 

represents the penalty for introducing a new line segment into the compressed representation, is 

also needed for the algorithm. More line segments imply better accuracy; however, the 

corresponding compressed representation needs more storage. Bellman's algorithm creates an 

optimal fitting of the GPS trace using line segments (where optimality is defined as minimizing 

the RMS error), taking into account the penalty factor C.  

 

In order to optimality fit the line segments to the curve, Bellman's algorithm assumes that the 

input data is a valid (i.e., single-valued) function; thus, the trajectory cannot contain no loops.   

However, due to inaccurate measurements by GPS devices, loops are often present in trajectory 

data. In this research, the input data stream was scanned to detect if the next point in the series 

would violate the rules of a valid function. When this occurs, Bellman's algorithm would be 

called on a subset of the original data stream, with each subset containing only points that form 

valid functions. Therefore, our trajectory-based version of Bellman's Algorithm, may execute the 

original algorithm multiple times for a single trajectory, with each call executing on a segment of 

the original GPS trace. The smaller dataset size improves execution time (since it is running on 

smaller segments of the original trace); however, this affects the accuracy since global 

optimization is not performed.  

 

3.5 STTrace 

 

The STTrace algorithm [21] is designed to preserve spatio-temporal, heading and speed 

information in a trace. A hybrid between an online and batch approach, STTrace defines a safe 

area by first using the previous two points in the series.  A vector defining the speed and 

direction between the two locations is used to predict the location of the next point.  Two input 
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parameters are used to make this prediction. One of these parameters is the speed tolerance 

which defines how much the speed can vary while still remaining in the predicted range. The 

other input parameter is the heading tolerance that defines how much the heading can vary while 

still remaining in the predicted range.  

   

The two input parameters are used to construct a "safe area" polygon to adjust the degree to 

which the speed and heading can vary.  If the third point in the GPS trajectory is inside this 

polygon, then it is considered to be within the predicted range and therefore not stored.   

Otherwise, the point is thought of as exhibiting unexpected behavior. Since such a point may 

contain information that is vital to the GPS trace, it is included in the compressed representation.      

 

 
Figure 4: The STTrace Algorithm predicts the behavior of the next points based on 

previous GPS trajectory points.  Points within the predicted Safe Area are not stored.  

 

 

If the STTrace algorithm is implemented as described above, error propagation can be a major 

problem.  This occurs when a point falls on the outer edge of each polygon; thus, it is possible 

for the error to accumulate, causing the compressed trace to become more and more inaccurate.  

Small changes at each time stamp over a long enough time period result in major deviations that 

need to be stored in the compressed version.  
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Figure 5: STTrace approximating a GPS trajectory. The original trajectory is shown as the 

red dashed line; the compressed trace is shown as the blue solid line. Points that reside 

outside the intersection of both the yellow and green polygons are added to the compressed 

trajectory. 

 

 In order to resolve the issue of error propagation, STTrace uses a second safe area polygon, 

shown using horizontal slashes in Figure 4. (This figure is a simplified version of Figure 4 in 

[21].) This safe area is defined by using two GPS points: the point three time-steps back and the 

point two time-steps back (points a and b).  The direction and speed are extrapolated over a two 

time-stamp distance to determine a predicted range at a given time. Only points that are within 

both safe areas, shown using diagonal slashes, are determined to be within the predicted range. If 

a point is outside the intersection of the two polygons, it is stored in the compressed version.  

This eliminates the problem of error propagation, at the cost of some additional computation.  

 

Figure 5 illustrates the execution of STTrace in Matlab on a subset of a GPS trajectory.  The two 

colored polygons show the two safe areas defined at each time step.  Points that are in the 

intersection of both polygons (shown in green) are considered to be predicted and redundant 

based on previous points, and therefore are not included. Points that are outside the intersection 

of both polygons (shown in red) are stored in the compressed form.  
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3.6 Additional Algorithms 

 

 

Clustering and statistical aggregation methods that compress many GPS traces were not 

compared in this study due to the difficulty of appropriately measuring the effectiveness of such 

vastly different techniques. While the algorithms used in this study compress a single GPS trace, 

the algorithms in the literature that were not compared in this study operate on a GPS trajectory 

collection comprised of potentially hundreds or thousands of traces.  A brief description of these 

other approaches is included below to provide a thorough literature review of available 

techniques.  

 

Statistical methods are primarily focused on determining appropriate aggregation levels.  These 

techniques are based on comparisons of statistical measures, and more recently, on wavelet 

decomposition. Data aggregation involves determining the proper sampling interval for storing 

the most significant spatial-temporal information. By exploiting the characteristics of the data, 

properly determined aggregation levels can lead to a drastic reduction in storage space. The 

optimal decomposition level is determined by finding the time interval with the most similarity 

and hence the least amount of variability during at each time step.     

  

Implementations of statistical techniques utilize the minimal amount of sufficient statistics 

necessary to capture the full information contained within a parameter distribution.  Some 

statistical solutions use a cross-validated mean square error, while others utilize an F-statistic 

computation to obtain the optimal aggregation level [10]. The decision as to which approach 

works best is often based on the most significant statistical approach, in conjunction with 

market-driven parameters such as the value of the data.  Recent work using wavelet 

decomposition [22,26,27] is most often applicable for capturing significant information in 

intelligent transportation systems. Based on Shannon's Theorem in information theory [15], 

wavelet analysis is useful for identifying trends.  

 

Other compression methods use a suitable data structure for storing the most recent information.  

The AM-Tree data structure [19,20]  is primarily based on the assumption that information value 

decays over time.   As time progresses, the AM-Tree stores past information regarding GPS 

trajectories at coarser and coarser resolutions. The root of the tree contains information about 

every time-stamped message received, with each additional level from the root containing half 

the number of time-stamped messages over a given time interval.  

 

Another class of algorithms exploits redundancy across a large set of trajectories. One such 

example is the Scalable ClUster-Based Algorithm (SCUBA) [18] which compresses many GPS 

trajectories together, instead of reducing the storage requirements for a single trace.  This 

algorithm clusters similar GPS trajectories; this process can substantially reduce the space 

complexity by minimizing the storage of similar information.    
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4. DATA COLLECTION METHODS 

 

For this research, two distinct datasets were collected; one dataset was obtained from a fleet of 

buses in Albany, New York (Public-Transit dataset); another was obtained from 24 volunteers at 

the New York Metropolitan Transportation Council  (NYMTC dataset).   

 

The Public-Transit dataset was obtained from GPS units on-board buses traveling in Albany, 

New York, over a period of 12 weeks during from October to December, 2009.   Forty one buses 

were tracked during this time period, operating on four different routes.  The data for the buses 

was separated for each day the bus was tracked, resulting in over 3144 trajectories.  GPS devices 

were originally installed in these vehicles in order to measure the on-time performance and to 

determine an optimal routing of buses for the public transportation system in Albany.  Bus routes 

were fairly constant over the time period in which the buses were monitored, but traffic, weather 

and other variables caused significant variation for each bus across the different traces. The on-

time performance of the buses was between 60 and 70 percent, indicating significant deviation 

from the bus schedule.  

 

In the second dataset, twenty four volunteers at the New York Metropolitan Transportation 

Council (NYMTC) were recruited and asked to carry GPS units for one weekday.  Each GPS 

unit was configured to automatically log the person's position every 5 seconds along with the 

date, time, speed, etc. Each respondent was asked to turn on the GPS unit at the beginning of 

each day and carry the unit with them at all times. The GPS unit was only turned off at the end of 

the day when the person came home and didn't plan to go out again.   

 

Three groups of traces (trajectories) were created from the Public-Transit and NYMTC datasets, 

with each group representing one travel mode (pedestrian, bus and multimodal). Each trajectory 

contains 5,000 points.  The bus dataset contains four trajectories, one for each route tracked.   

The other two groups (pedestrian and multimodal) have five trajectories each. (The classification 

of trajectories into the groups was done by matching the travel mode indicated on the travel diary 

to the trace.)   To select representative samples, five traces for each of these two modes were 

chosen from different individuals traveling in separate regions across New York City.  An 

additional dataset consisting of a single trace comprised of 30,000 points was selected for each 

transportation mode.  This larger dataset was used to measure execution times of the seven 

algorithms considered in this study.   

 

5. PERFORMANCE COMPARISON 

 

Seven algorithms (Uniform sampling, Douglas-Peucker, TD-TR, OPW-TD, OPW-SP, STTrace 

and Bellman's algorithm) were run on the collection of traces obtained as described in the 

previous section. This section discusses the performance of these algorithms with respect to 

execution times and various error metrics.  
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5.1 Comparison Based on Execution Times 

 

The actual execution time of each algorithm across the three travel modes are shown in Figure 6.  

Since higher compression ratios typically result in slower run-times,  a common compression 

ratio of 7 was chosen for each trace; therefore, the final size of the compressed trace is  (1/7)th 

the original size. There was no significant difference in the run-time performance for any 

algorithm among the different travel modes when the common compression ratio of 7 was used.  

However, datasets with unpredictable behavior contain little redundancy, and typically lead to 

higher error rates. (This is discussed further in the next subsection.)  In practice, it is logical to 

compress datasets with frequent changes in direction and speed to a smaller compression ratio 

compared to datasets that demonstrate more predictable behavior. Therefore, differences in 

execution times for different travel modes become more apparent, since they are not all 

benchmarked to a common compression ratio.  

 
 

Figure 6: Algorithm Execution Time across different compression algorithms and travel 

modes. Input GPS trajectories consist of 30,000 points 
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Substantial difference in run-time performance between the different algorithms was observed.  

STTrace was by far the slowest algorithm, with an execution time of about 40 seconds; not 

surprisingly, uniform sampling was the fastest, with an execution time of about 0.002 seconds. 

STTrace incurs significant computational overhead due to the calculation of the points that 

define the safe area polygons and the test to determine whether additional points reside within 

the convex hull of the polygons.  In contrast, uniform sampling is very fast since simply every ith 

point is taken from the original trace.  (In our experiments, i was set to 7 to achieve a 

compression ratio of 7.)  

 

Significant differences with respect to run-times were not apparent in algorithms that are slight 

modifications of each other.  For example, Douglas-Peucker and TD-TR, had execution times of 

about 2.2 seconds and 2.5 seconds respectively.  The Opening Window Algorithms OPW-TR 

and OPW-SP had median run-times of 0.4 seconds and 0.5 seconds respectively. The slight 

decrease in performance is noticeable for algorithms that compute more complicated metrics. 

This explains the slight difference between Douglas-Peucker and TD-TR and that between 

OPW-TR and OPW-SP.  The performance of OPW-SP depends heavily on the input parameters 

given. A low value for the speed tolerance results in poorer performance, as the speed 

component is more computation intensive compared to synchronized Euclidean distance.   

 

Bellman's algorithm had a mean run-time of about 3.2 seconds. The performance of Bellman's 

Algorithm depends heavily on the number of times the algorithm is called.   When a trajectory 

contains loops, Bellman's algorithm was run for each segment after eliminating the loops as 

described in Section 3.4. The more loops, the better is the run-time performance; however, this 

inversely impacts the overall accuracy of the compression.  

 

 

5.2 Comparison Based on Error Metrics 

 

A comparison of the algorithms with respect to the median synchronized Euclidean distance 

error metric (shown in Figure 7) demonstrates significant differences between the various 

algorithms, as well as the three travel modes: pedestrian, multimodal and bus. All algorithms 

were compared at a common compression ratio of seven, and on the same input data size of 

5,000 points.  On average, the bus dataset had the highest degree of error, followed by the 

pedestrian travel mode; the multimodal dataset had the least amount of error.  The bus dataset 

has two properties that make compression difficult.  First, GPS units inside the bus have an 

obstructed view of the sky, causing the horizontal dilution of precision (HDOP). This causes the 

location data to be less accurate.  The second reason is that it is common for buses to stop either 

due to traffic or due to designated stops.  High error, combined with frequent stops,  causes 

random fluctuations and noise to be introduced into the GPS trajectory, resulting in less 

redundancy and higher measured error between the original and the compressed traces.   
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Figure 7: Difference in spatiotemporal error across different compression 

algorithms and travel modes.  Error is measured using median synchronized 

Euclidean distance. 

 

 

The pedestrian dataset had a higher median sed error rate than the multimodal dataset. The 

reasoning is similar to the bus dataset, in that GPS units in a complex urban environment, such as 

New York City, often have low accuracy due to the urban canyon effect that occurs from 

reflection of GPS signals off tall buildings.  Furthermore, pedestrians can often change directions 

and walk inside buildings, which cause difficulties when compressing the trajectories.  In 

contrast, the multimodal dataset has individuals that are sometimes outside of urban areas, such 

as driving a car or traveling in trains.  Travel on major roadways and trains leads to less 

fluctuation in movement, speed and heading.    

 

In comparing the seven algorithms with respect to the sed error, substantial differences are 

observed.   Most striking is the sed error of algorithm OPW-SP even compared to uniform 

sampling. This error is high due to the parameter selection, since a trade-off is made between 

spatiotemporal accuracy and speed accuracy.  Setting a low speed tolerance and a high time-

distance ratio tolerance results in poor sed performance, but smaller speed residuals.  

Accordingly, this was the parameter selection used in this study, in order to demonstrate the 

difference between the two opening-window algorithms. In contrast, Bellman's algorithm was 

the best choice for low compression ratios, but was not suitable for high compression ratios and 

datasets that contain a large number of loops.  One unexpected result was that Douglas-Peucker 

performed better than the modified version of TD-TR, which uses the time-distance ratio in the 

error calculation instead of maximum spatial distance.    
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Overall, Douglas-Peucker also outperformed the Opening Window Algorithm (OPW-TR), with a 

median sed error of 5 meters compared to an average rate of 10 meters respectively.  However, it 

is important to remember that Douglas-Peucker is a batch algorithm, while OPW-TR is online.  

 

For the seven algorithms, the results of the median difference in speed between the original 

trajectory and the compressed trajectory are shown in Figure 8.  Similar to the sed error metric 

results, the bus dataset had the highest error rate compared to the pedestrian and multimodal 

datasets. This is most likely due to the near constant fluctuations in speed that occur due to bus 

stops and traffic conditions.  Furthermore, unlike the pedestrian dataset, buses are capable of a 

high rate of speed, allowing the amount of speed change to be far greater than an individual 

traveling by foot.  The multimodal data contained traces with more or less uniform velocities, 

thereby reducing the amount of error compared to the bus dataset.    

 

 
Figure 8: Difference in median speed error across different compression algorithms 

and travel modes. 

 

 

STTrace obtained the most consistent speed results, since sharp changes in speed are readily 

detected by the algorithm; such points lie outside the intersection of the two safe area polygons. 

However, the median speed error for the pedestrian dataset was slightly worse than that of 

Uniform Sampling.   The algorithms of Bellman and Douglas-Peucker both have low speed 

errors.   
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The median speed error for OPW-SP was slightly better compared to OPW-TR. Our data shows 

that the error rate for OPW-SP is dependent on the speed tolerance parameter.  Changing this 

parameter can lead to results that are better or worse than OPW-TR.    

 

Measuring the error in direction or heading introduced by compression algorithms yields some 

distinctly different findings compared to the sed and median speed metrics.  One difference is the 

degree of error between the different transportation modes.  With respect to sed or speed error, 

the bus dataset had significantly higher error than the pedestrian and multimodal datasets.  

However, when measuring the difference in heading, on average the bus dataset has the lowest 

error (shown in Figure 9). This is most likely due to simple, predictable bus routes that often run 

in straight lines down major roads; thus, the dataset has fewer changes in direction.   

 

The difference in median heading error between the pedestrian dataset and multimodal was 

negligible.   For minimizing heading error, the best performance was exhibited by Bellman's 

Algorithm followed by STTrace.  However, both these algorithms are only effective when the 

compression ratios are fairly small. For larger compression ratios, there was no significant 

advantage in heading accuracy between Douglas-Peucker, TD-TR, OPW-TR and OPW-SP 

compared to using Uniform Sampling.   

  

 
Figure 9: Difference in median heading error across different compression algorithms and 

travel modes 
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6. DISCUSSION 

 

We believe that this empirical study fills a gap in the literature, by comparing numerous 

algorithms on the same dataset using different error metrics.  In comparing these different 

algorithms side-by-side, the trade-offs between accuracy and computation time can be evaluated 

on an equal footing.  By understanding how well these compression algorithms work on traces 

corresponding to different  transportation modes, application-specific compression can be used to 

determine the best algorithm for a specific context.   

 

A key finding of this study is the substantial difference in the compression performance based on 

the travel mode.  This suggests that there is no one-size-fits-all approach in selecting a 

compression algorithm.  Application-specific algorithms are needed to match the best algorithm 

to the type of information utilized by the application or business process.  Table 2 shows 

recommendations for the choosing the most appropriate algorithm based on the characteristics of 

the dataset.    Overall, uniform sampling is a viable alternative if the application requires a quick 

and simple compression with reasonable error rates.  Other algorithms used in this study can 

result in substantially better compression; however, they also require substantially more CPU 

time and memory.  Specifically, the Opening Window Algorithms execute fairly quickly, but 

may not lead to a large decrease in median sed and speed errors compared to uniform sampling. 

Indeed, for a number of trajectories, the Opening Window algorithms may have a higher error.   

  

With GPS traces that appear random (i.e., traces that contain many rapid changes in 

direction/speed), our study indicates that sophisticated algorithms may not yield consistently 

better performance across numerous error metrics compared to uniform sampling. Segments of 

GPS traces that exhibit frequent changes in heading are often the result of noise; such segments 

can be omitted from the compressed representation with minimal information loss.   Thus, our 

study suggests that uniform sampling may offer the best trade-off in terms of execution time and 

accuracy for GPS traces that exhibit high variability in direction and/or speed.  Traces that are 

information-rich, are best compressed using the Bellman's algorithm or the Douglas-Peucker 

algorithm.  The development of a hybrid approach to GPS trace compression requires knowledge 

of the scenarios in which an algorithm works well as well as those in which the algorithm 

performs poorly.  The trajectory-based execution of Bellman's algorithm described in Section 3.4 

performs very well for small compression ratios. However, for most input trajectories, very high 

compression ratios are unattainable. This is due to the segmenting of the original GPS trajectory 

into numerous pieces in order to prevent execution of Bellman's algorithm on trajectories with 

loops. Each segment requires a minimum of two points, namely the start and end points of the 

segment.   Thus, the size of the compressed representation depends on the number of (loop-free) 

segments used.  
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Table 2: Preferred Algorithm based on Travel Mode 

 

 

7. FUTURE WORK 

 

One possible approach for improving the compression of GPS trajectory data would be to use 

knowledge of the road network.  Deviations from the road network would need to be stored, 

along with additional information needed to capture the speed and acceleration of the vehicle. 

This could allow for a drastically smaller compressed representation with minimal compute time 

and substantially reduced error. Map matching algorithms [24] are currently used on mobile 

devices to determine where on a road network an asset most likely resides.  These algorithms can 

be used in conjunction with compression schemes to determine when an object deviates from a 

specific road segment.  

 

GPS devices are unable to pinpoint the exact location of an object; instead, they provide an 

approximation.   The accuracy of the location data derived from a GPS device depends on a few 

major factors, including the hardware, location of the satellites, atmospheric conditions and 

obstructions that can reflect signals. Future work that accounts for this inherent noise can reduce 

the storage requirements, without any significant loss of information.  Smoothing that occurs 

from this de-noising process, if implemented correctly, could result in more useful traces for data 

analysis and query processing.  

 

The sheer diversity of applications that collect and retrieve information from GPS trajectory data 

makes it difficult to obtain a comprehensive data set that encompasses this wide range of 

possible applications. Extending this work to allow larger datasets and additional travel modes 

would allow a more comprehensive comparison.     

 

An additional factor that is related to optimal parameter selection is the ease-of-use of an 

algorithm.  Some of the algorithms compared in this study use sophisticated techniques to 

compress the data.  Users may find it difficult to understand these algorithms. As a consequence, 

they may find it difficult to choose an appropriate set of input parameters for such algorithms. 
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Therefore, simplicity and knowledge regarding typical users of these algorithms may influence 

the trade-offs and overall practicality of the different compression methods.   

 

A related opportunity for future work is to devise methods for optimal parameter selection to 

achieve the best trade-off between accuracy and compression ratio for a given trajectory.  For 

example, algorithms such as OPW-SP have two parameters, one for the spatiotemporal 

component, and one to indicate a maximum deviation in speed.  Often, it is difficult to manually 

determine the appropriate values of these parameters that yield a desired compression ratio.    

 

In this work, the effectiveness of the compression techniques was measured using metrics that 

indicate how well spatiotemporal information is preserved and the actual run-times of the 

techniques. Since compressed representations are also used to process queries, it is of interest to 

study the effectiveness of the compression techniques using application-specific metrics that 

quantify the differences in the responses to queries on uncompressed and compressed 

representations.  
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