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EXECUTIVE SUMMARY 

Demand for vehicle and public transportation systems continues to increase in and around 

major urban centers. This increase is especially pronounced during the morning and evening 

commutes and is further complicated by the complex spatial interactions that influence the 

variation in system demand.  In an effort to help agencies better understand this variability and 

develop better demand forecasts this research investigated the underlying factors impacting 

public transportation ridership regardless of transit mode, then uses this insight to estimate 

specific models to help forecast changes in subway ridership. The spatial database for the case 

study consisted of social, economic, and land use characteristics for all 2166 census tracts in 

New York City, NY’s five boroughs. The data were used to estimate spatial econometric models 

for the percentage of commuters using public transportation at the census-tract level and the 

change in subway ridership between 2011 and 2016 at the subway station-level.   

Analysis of the commuters indicate that census tracts with a higher average commute 

time, greater employed population, higher per capita income and lower median household 

income were found to have a higher percentage of commuters using public transportation. 

Additionally, this percentage increased if neighboring census tracts had a greater commercial 

space area or fewer buildings. Lastly, the percentage increased in a tract if it increased in 

neighboring tracts and vice-versa. The may be reflecting social norms or stigma related to public 

transportation versus personal vehicle ownership.  

Results of the change in subway ridership between 2011 and 2016 indicate that subway 

stations that serve more train lines or are in areas comprised of census tracts with a greater 

number of tax units (residential, commercial, etc.) or lower mean household incomes 
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experienced a greater increase in ridership. Furthermore, subway stations located in areas 

surrounded by census tracts with more commercial property or higher median family income are 

also expected to have a greater increase in ridership. Lastly, ridership at a given station decreases 

due to an increase in ridership at neighboring stations. This may indicate that a change in 

ridership at a station is due, in part, to riders in a region changing which station they use instead 

of riders shifting from alternative modes of transportation. 

The spatial models were found to have a higher overall model fit compared to their non-

spatial counterparts. Moreover, spatial dependence was found to be statistically significant in 

both models. Failure to account for spatial dependence in estimating public transportation use at 

the census tract or station level could lead to biased, inefficient or inconsistent parameter 

estimates. The completed research can help public agencies better address resource allocation by 

identifying locations for network expansion or locations that are over or underperforming in 

terms of expected ridership. 
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1 INTRODUCTION 

1.1 Background 

Municipalities invest in public transportation systems, in part, to combat increasing road 

congestion. Investments in subway and bus rapid transit systems directly remove drivers from 

the road network onto alternative transportation systems. Investments into on-road public 

transportation, such as local and city public bus systems, help to alleviate congestion by 

increasing vehicle occupancy rates and thereby reducing the average space in the network 

consumer by each individual user. Investments in rail networks, such as region’s commuter rail 

or city’s subways, can result in users shifting off of the road network for a portion of their trips. 

The biggest impact can be expected during the busiest travel times, specifically during the 

morning and evening commute. Analysis of public transit use and commuters is complicated by 

the fact that public transit use in general and specifically for the purpose of commuting is not 

constant over space. There are census tracts in New York City that have less than 10% of 

commuters reporting using public transportation while other census tracts in the city report over 

90%. In a city with easy access to public transportation (bus, subway, etc.), there is a need to 

explore the influential factors that contribute to this variation in use. This information could help 

public agencies better address resource allocation by identifying locations that are over or 

underperforming in terms of expected ridership or identifying locations for network expansion. 

The impact that land use and socioeconomic demographics have on public transportation 

use for the purpose of commuting in not constant over space. Previous research on this topic 

have implicitly ignored the direct and underlying spatial processes (Cervero, 1993; Kitamura et 

al., 1997; Kyte et al; Kain and Liu 1999; Boarnet and Greenwald, 2000). In reality, it is observed 

that passengers embarking or disembarking at a given transit stop live, work, and recreate in both 
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the immediate neighborhood as well as the adjacent neighborhoods. If public transportation use 

is high in a given census tract it could indicate that access to public transportation is especially 

convenient in the census tract which would could increase the percentage of commuters using 

public transportation in neighboring tracts. There could also be a negative stigma associated with 

public transportation in a given tract that could impact the decision making of those living in the 

census tract as well as those living in neighboring census tracts. Vehicle ownership is seen by 

some as a symbol of social status with public transportation perceived as a less desirable mode of 

travel. These social norms can propagate out of a region and effect the decision making of 

neighboring areas. These complex spatial interactions are crucial to understanding the observed 

variation in public transportation use.  
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1.2 Scope and Motivation 

This research combined big-data visualization with spatial econometric modeling. Data 

collection included demographic and economic census data analyzed at the census tract-level 

paired with comprehensive land use and valuation based on tax lot records. This enabled the 

visualization of the complex interrelationships in the data. Spatial econometric models were used 

to capture the complex spatial trends that characterize the relationship between the influential 

factors and public transit use. The five boroughs of New York City (NYC) are used as a case 

study (Figure 1). The research investigates two important aspects of public transportation use. 

The first is public transportation used specifically for commuting regardless of transit mode. 

These insights were then used to develop models to estimate the five-year change in subway 

ridership. The underlying causes for variability in public transportation use and ridership are not 

constant over space which, if left unaccounted for in statistical and econometric models, will 

yield biased, inefficient, and inconsistent results (Anselin, 1988a; 2006; Anselin and Rey, 2014). 

The impact of spatial dependence can be investigated using lagged independent variables, known 

as cross-regressive terms, lagged dependent variables, and/or by applying a spatial process to the 

error term. In the context of the current research, cross-regressive terms quantify the change in 

public transportation use or subway ridership in a given census tract or at given subway station 

due to the land use and socioeconomic characteristics of neighboring census tracts. The lagged 

dependent variable captures the propensity for the public transportation use/subway ridership at 

one location to be impacted by the use/ridership in neighboring locations. In doing so, the lagged 

dependent variable accounts for global spillovers in that the use/ridership at one location is a 

function of the use/ridership of its neighbors, which is a function of their neighbors’ 

use/ridership, and so on. The overall goal of the research is to develop efficient and unbiased 
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models for commuters’ use of public transportation and the five year change in subway ridership. 

The resulting models can be used by public agencies and decision makers to identify locations 

that are over or underperforming in terms of expected use/ridership for the purposes of resource 

allocation while also providing the framework to identify the best geographic areas for network 

expansion.  

 

Figure 1. Study Area: New York City Boroughs 

 

1.3 Review of Current Literature 

Understanding the link between the socioeconomic conditions of a region and the 

propensity for those who reside in the region to use public transportation informs transportation 

policy-making at the state, regional, and local levels. Transportation agencies and policy makers 

have long grappled with shrinking budgets precipitating the need to optimize investment while 
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ensuring an equitable distribution of the benefits of public transportation across user groups. In 

response to this need, research has continuously sought to better quantify underlying causes for 

variance in public transportation use in geographic regions. The body of literature on this topic 

has implicitly assumed that the causes of variance are constant over space. However, if this 

assumption is not reflected in the actual data then the resulting econometric models would have 

the potential to lead to biased, inefficient, and inconsistent results (Anselin, 1988a; 1988b; 2006; 

Anselin and Rey, 2014). People are not limited to the public transportation options provided in 

the census tract in which they live, but are more likely to use public transportation options closer 

to their homes. For this reason the propensity for the people living in a given area (census tract) 

to use public transportation in general or a specific mode is informed by the characteristics of 

their home and neighboring tracts.  

Previous research has investigated the variation in transit use over time as a function of 

economic and land-use characteristics for a limited number of locations (Boarnet and Greenwald, 

2000; Kain and Liu 1999). Research focusing on larger cross-sectional studies of public 

transportation for commuting and non-commuting trips (Cervero, 1993; Boarnet and Greenwald, 

2000; Kitamura et al., 1997) have not accounted for spatial effects. Limited research has been 

conducted that directly investigates the underlying spatial processes evident in the data. The 

research that has addressed the issue focused on unobserved spatial process (spatial error) at the 

state-level without accounting for local spillovers (Chakrabortya and Mishrab, 2013).  In 

additional to the limited research on public transportation, past research has used spatial 

econometric analysis to determine the relationship between socioeconomic factors and vehicle 

use and vehicle ownership (Badoe and Miller, 2000; Volovski, 2015). Some of the research 

estimated the average individual or household vehicle-miles-traveled (for a zip-code or census 
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tract) as a function of local and lagged socioeconomic variables (Frank et al., 2000; Cook et al., 

2012). In addition to the limited past research on spatial modeling of vehicle use and ownership 

data, there have been spatial econometric applications in other areas of transportation research, 

most notably in transportation safety data analysis and modeling. Spatial autocorrelation 

regression estimation techniques have been used to model crashes involving vehicles and 

pedestrians (LaScala et al., 2000; Schneider et al., 2000), and vehicles only (Boarnet and 

Greenwald, 2000; Li et al., 2007; Aguero-Valverde and Jovanis, 2008; Erdogan 2009). 

Furthermore, research has shown the influence of socioeconomic characteristics on vehicle crash 

rates across regions (Kirk et al., 2005; Stamatiadi and Puccini 1999).  
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2 DATA 

Social, economic, and land use data were collected and analyzed. The data was used to 

investigate two measures public transportation use in large metropolitan centers. The first 

measure, commuter transit use, is defined as the percentage of commuters in a census tract that 

that use public transportation as their primary means of travel to and from work. The second 

measure, change in subway ridership, is defined as the five year change in subway ridership by 

station based on annual ridership data from 2011 to 2016.  

Social, economic, and land use data was aggregated at the census tract-level due to the 

relative consistency across tracts in terms of key characteristics such as population size (between 

2,000 and 8,000). High quality data for the 2166 census tracts (Figure 2) across the five boroughs 

of New York City is available from regional, state, and national sources. New York City was 

chosen as the case study location due to availability and accessibility of its public transportation 

system. Its extensive network of public transportation modes includes the nation’s largest 

subway system in terms of ridership, length, and number of stops and largest bus system in terms 

of total ridership (APTA, 2017). 
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Figure 2. New York City Census Blocks 

2.1 Data Collection 

Data were obtained from multiple sources. Social and economic data, including 

commuter mode choice, were obtained from the 2015 American Community Survey conducted 

by the United States Census Bureau (U.S. Census, 2015). Land use data were obtained from the 

2017 PLUTO database administered by the New York City Department of City Planning 

(PLUTO, 2017). Subway ridership data were obtained from the Metropolitan Transportation 

Authority. Table 1 provides a brief summary of the descriptive statistics for the factors that have 

been shown to influence transit use. 
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Table 1 Descriptive statistics for select census tract variables 

  
Average 

Standard 
Deviation 

1st 
Quartile 

Median 
3rd 

Quartile 
Max 

Percent commute with public transportation 
0.547 0.166 0.434 0.572 0.678 1.000 

(0.000 – 1.000) 

Mean travel time to work  
40.45 7.17 36.80 41.10 44.70 100.00 

(minutes) 

Mean household income  
78,555 44,948 52,538 69,434 89,512 435,803 

(in 2014 inflation adjusted dollars) 

Median household income  
58,543 28,919 38,608 53,868 73,044 250,000 

(in 2014 inflation adjusted dollars) 

Per capita income  
31,488 24,732 18,364 24,746 34,403 247,852 

(in 2014 inflation adjusted dollars) 

Percent with health insurance 
0.868 0.073 0.828 0.874 0.920 1.000 

(0.000 – 1.000) 

Building area 
2.527 2.955 1.174 1.788 2.690 54.138 

(gross area for all buildings in 1,000,000ft2) 

Commercial area 
0.841 2.117 0.136 0.300 0.623 26.210 

(gross commercial area in 1,000,000ft2) 

Land area 
2.976 8.755 1.098 1.313 2.134 214.976 

(land area in ft2) 

Number of residential units 
1,625 1,290 841 1,338 2,008 14,338 

(total) 

Total assessed value  
160.21 418.27 31.09 52.92 99.06 6,800.97 

(total of all tax lots in $1,000,000) 

 

New York City subway ridership and station location data were obtained from two open-

sourced databases compiled by the New York City Metropolitan Transportation Authority (MTA 

2015; 2017). Ridership data included the annual ridership by borough and average weekday and 

weekend ridership for each subway station. The total subway ridership per borough is broken 

down in Figure 3. 
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Figure 3. Annual New York City Subway Ridership by Borough  

It is important to note that the ridership statistics reflect the number boarding at each 

station not the total volume of riders at the station (entering, exiting, and pass-through). Figure 4 

shows the location of the subway stations. The stations are spread across all the boroughs except 

Staten Island. Station locations were obtained from the MTA station entrance database. This 

dataset included; the coordinates (latitude and longitude) for all entrances to each station, the 

coordinates of each station, the subway lines accessible at each station, and the ADA 

accessibility of each entrance. Since ridership data was station specific, the location and 

accessibility data obtained from the station entrance database had to be grouped by station before 

being merged with the ridership data.  
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Figure 4. New York City Subway Stations 

It can be difficult to quantify the factors that influence subway ridership in a region 

where the variation in ridership is immense. For instance, in 2016 the average ridership at the ten 

busiest subway stations was over 32 million annual riders, whereas the average at the ten stations 

with the lowest ridership was just over 250 thousand annual riders. Investigating the change in 

ridership, in terms of magnitude or percent change, can reduce the variability in the data, thereby 

allowing for a more nuanced analysis of the underlying social, economic, and land use factors 

that influence subway ridership. The change in annual ridership and the percent change in annual 

rider between 2011 and 2016 is illustrated in Figure 5 and Figure 6, respectively. 
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Figure 5. Change in Annual Subway Ridership 2011-2016 by Station  

 

 

Figure 6. Percent Change in Annual Subway Ridership 2011-2016 by Station  
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3 METHODOLOGY 

3.1 Overview 

The social, economic, and land use data detailed in the previous section were used to 

investigate two measures of public transportation use in large metropolitan centers. The first 

measure, commuter transit use, is defined as the percentage of commuters in a census tract that 

use public transportation as their primary means of travel to and from work. The second 

measure, change in subway ridership, is defined as the change in subway ridership from 2011 to 

2016. Its extensive network of public transportation modes includes the nation’s largest subway 

system in terms of ridership, length, and number of stops and largest bus system in terms of total 

ridership (APTA, 20170). Spatial econometric modeling techniques were used to investigate the 

factors effecting transit use while accounting for spatial processes. All spatial econometric 

modeling was completed using the spatial software GeoDa and GeodaSpace (Anselin et al., 

2006a). 

3.2 Spatial Weights Matrix 

The spatial weights matrix is used to define the connectivity between a location and its 

neighbors. Connectivity can be defined by the form (rook, queen/king, k nearest neighbors, 

distance) and the extent (order or number). Connectivity in 1st order rook matrix are all regions 

that share an edge, a 1st order queen/king matrix is a rook matrix that includes regions that only 

share a single vertex, elements in a k-nearest neighbor matrix all have the same number of 

neighbors (k), and connectivity in a distance matrix is defined by the distance between the 

regions, typically measure between the regions’ centroids (Anselin and Rey, 2014; Cliff and Ord, 

1981).  
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3.2.1 Moran’s I 

The Moran’s I is a measure of spatial autocorrelation of a given variable and is defined in 

Equation 1. The null hypothesis is that the variable exhibits spatial randomness, the alternative is 

spatial dependence. Moran’s I takes the form: 

𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗𝑗𝑖

∑ ∑ 𝑤𝑖𝑗𝑗𝑖 (𝑋𝑖 − 𝑋̂)(𝑋𝑗 − 𝑋̂)

∑ (𝑋𝑖 − 𝑋̂)
2

𝑖

 1 

Where (xi – x) is the rate of region i centered on the mean for i≠j, N is the number of 

regions, and wij is the weight between region i and j. The statistical significance of Moran’s I can 

be determined using random permutations where the variable of interest is randomly reassigned 

across the geographic units. 

3.3 Models for Spatial Dependence and Spatial Heterogeneity  

Spatial process models can take a variety of forms depending on which functional 

components (dependent variable, independent variables, and/or error) have a spatial process 

applied (Anselin, 1988a; 1988b; Anselin and Rey, 2014). Spatial error models can be estimated 

to ensure that regression estimation is efficient in instances where spatially correlated error terms 

are observed in the dataset (Anselin, 1988a). The spatial error model takes the form Anselin, 

1988b; Anselin and Rey, 2014): 

𝑦 = 𝛽𝑥 + 𝜀 

𝜀 =  𝜆𝑊𝜀 +  𝜇 

2 

where the dependent variable, y, is a function of a vector of independent variables, x, and 

a spatial error term 𝜀. Spatial autocorrelation is accounted for in the error term by introducing the 
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weights matrix, W. μ  is a non-spatial error term. The estimated parameter λ can be tested to 

determine if the spatial error is statistical significance. 

Spatial dependence can be accounted for by using a spatial lag or a cross regressive 

model. Failure to account for spatial dependence will result in biased and inconsistent parameter 

estimates (Anselin, 1988b; Anselin, 2006). The dependent variable in a spatial lag model is 

estimated as a function of the observation’s independent variables and its neighbor’s dependent 

variable. In the context of the commuter transit use model it means that the dependent variable, 

percentage of commuters using transit in a given census tract, is a function of the attributes of the 

census tract and the percentage of commuters that use transit in neighboring census tracts. Cross-

regressive estimation allows for the dependent variable to be estimated as a function of the 

attributes of the given census tract and the attributes of neighboring census tracts.  

The Spatial Durbin Model incorporates both spatial lag and cross-regressive terms. It 

takes the form (Anselin, 1988b; Anselin and Rey, 2014): 

𝑦 = 𝜌𝑊𝑦 + 𝛽𝑥 + 𝛾𝑊𝑍 + 𝜇 3 

where Wy is the spatial lag term, WZ is a vector of cross-regressive terms, and ρ and γ are 

coefficients for the lagged dependent variable and lagged independent variables (cross-regressive 

terms), respectively. It is important to note that regardless of the type of weights matrix chosen, 

the lagged independent variable and spatial error term will account for global spillovers. The 

endogeneity of the lagged dependent variable can be overcome with two-stage least squares 

estimation (2SLS), a special case of instrumental variables (IV) (Anselin and Rey, 2014). The 

General Spatial Durbin is a special case of the Spatial Durbin where spatial lag, spatial error, and 

cross regression are all statistically significant.  
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3.3.1 Tests for Spatial Lag and Spatial Error 

The Lagrange Multiplier (LM) and the robust LM test for spatial lag are used to 

determine if spatial error, spatial lag, or spatial error and lag are statistically significant in the 

data (Anselin, L.,1988c; Anselin et al., 1996; Anselin and Rey, 2014, ). The LM test for spatial 

error determines if the spatial error coefficient is statically different from zero. Likewise, the LM 

test for spatial lag determines the statistical significance of the spatial lag coefficient (Anselin, 

2006). The null hypothesis for the LM test for error is that spatial error coefficient (λ) is equal to 

zero. Equation 4 details the LM test for error.  

H0: λ = 0  

H𝐴: λ ≠ 0 

for 𝑦 = 𝛽𝑥 + λW + ε 

𝐿𝑀λ = [
e′We

s2
]

2

𝑇⁄ ~ 𝜒1
2 

𝑇 = 𝑡𝑟[(𝑊′ + 𝑊)] 

𝑠2 = 𝑒′𝑒/𝑛 

4 

 

 

Likewise, the null hypothesis for the LM test for lag is that the spatial lag coefficient (ρ) 

is equal to zero. Equation 4 details the LM test for lag. 
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H0: λ = 0  

H𝐴: λ ≠ 0 

for 𝑦 = ρWy + 𝛽𝑥 + μ 

𝐿𝑀ρ = [
e′Wy

s2
]

2

𝑛𝐽ρβ⁄ ~ 𝜒1
2 

𝐽ρβ = [(𝑊𝑋𝛽)′𝑀(𝑊𝑋𝛽) + 𝑇𝑠2] 𝑛⁄ s2 

𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′ 

5 

 

 

The LM test for spatial lag and the LM test for spatial error are unidirectional in that they 

only test for the presence of one spatial process. The robust LM tests can be used to test for either 

spatial lag or spatial error while accounting for the presence of the other. The robust LM test for 

lag and error are provided in Equations 6 and 7, respectively 

𝐿𝑀λ∗ =  [
e′We

s2
− 𝑇(𝑛𝐽ρβ)

−1 e′Wy

s2
]

2

𝑇[1 − 𝑇(𝑛𝐽ρβ)
−1

⁄  

[
e′Wy

s2
−

e′We

s2
]

2

/[ 𝑛𝐽ρβ − 𝑇] 

6 

7 

 

The Anselin-Kelejian (AK) test is a variant of the Moran’s I statistic applied to the 

residuals of the estimation. If the AK test results are statistically significant it indicates that there 

is spatial autocorrelation left unaccounted for in the developed model (Anselin and Kelejian, 

1997). 
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4 RESULTS: COMMUTERS USING PUBLIC TRANSPORTATION 

New York City is home to one of the Nation’s most robust public transportation 

networks. Even though there is nearly uninhibited access to the network, the variability in its use 

as a primary mode choice for commuters ranges from 10% to 90% across geographical units. 

This section presents the results of spatial econometric modeling to examine the social, 

economic, and land use characteristics that influence public transportation ridership for work 

trips. A non-spatial model, estimation without spatial error or lag, was estimated to provide a 

baseline for comparison. The non-spatial model results are presented in Table 2. The results 

indicate that the percentage of commuters using public transit living in a census tract is a 

function of the employed population, per capita income, mean travel time to work, and median 

family income. The R-squared and adjusted R-squared values indicate that the non-spatial model 

is explaining 32% of the variance exhibited in the census tract commuter transit data.  

The non-spatial model has a corresponding multicollinearity condition number of 21.91. 

This value is used as an indication of the degree to which explanatory variables show a linear 

relationship. In statistics, it is generally agreed upon that multicollinearity should be addressed if 

the condition number is greater than 30 (Anselin and Rey, 2014). The Jarque-Bera test for non-

normality of the error terms was significant at a 99% level of confidence (Jarque and Bera, 

1980). Therefore, in order to test the residuals for homoscedasticity (consistency of the error 

variance) a Koenker–Basset test, a variant of the Breusch-Pagan test (Breusch and Pagan, 1979), 

was used because, unlike the Braush-Pagan test, it does not assume normality of the error terms. 

The Koenker–Basset test value was significant at a 99% level of confidence. To account for 

heterogeneity, White-adjusted standard errors that are robust to heteroskedasticity were used 

(White, 1980). A General Spatial Durbin specification was estimated to obtain the coefficient for 
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the spatial error term, λ. It had an estimated coefficient of -0.042 and a corresponding 61% level 

of confidence, well below any acceptable threshold to reject the null hypothesis of no spatial 

error. Therefore, final model specification is the Spatial Durbin. 

4.1 Spatial Autocorrelation 

Spatial autocorrelation is a measure of the correlation a variable has with itself in space 

(Anselin, 1988a; 1988b; Anselin and Rey, 2014). Preliminary analysis of spatial autocorrelation 

can be completed by investigating a plot of the dependent variable over space to discern if there 

appears to be spatial clustering of relatively higher or lower values (positive autocorrelation). 

Figure 7 shows that there are clusters of census tracts with a higher percentage of commuters 

using public transit in northern Manhattan, selected areas of the Bronx and Brooklyn, whereas 

there are clusters of census tracts in Queens and Staten Island with relatively lower transit use.  

 

Figure 7. Quantile Plot for Percentage of Commuters Using Public Transportation 
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When spatial autocorrelation is positive it indicates that a census tract with a higher 

percentage of commuters using public transit correlates with neighboring tracts that also have a 

higher percentage (or smaller values correlate to smaller neighbor values). Negative 

autocorrelation occurs when greater values are correlated with smaller neighbor values (and vice-

versa). Spatial clustering is visible in the local indicator of spatial association (LISA) cluster map 

shown in Figure 8. The LISA map is best defined by Anselin as: “The LISA for each observation 

[say, a small region among a set of regions] gives an indication of significant spatial clustering of 

similar values around that observation. The sum of LISAs for all observations is proportional to a 

global indicator of spatial association” (Anselin, 1995; Anselin et al., 1996).  

Autocorrelation is found to exist in nearly half of the census tracts (960 out of 2106). 

Positive correlation was found in 917 tracts of which 503 were high-high spatial clustering and 

414 were low-low spatial clustering. High-high clustering is primarily found in tracts spread 

across northern Manhattan, southern Bronx, and northern Brooklyn. In these areas, a census tract 

with a higher percentage of transit use is more likely to have neighboring census tracts with 

higher transit use. There were only 43 instances of negative autocorrelation which means a 

census tract with high transit use is more likely to have a neighbor with low transit use. There are 

three neighbor-less census tracts which are located on islands with a small enough population to 

require a single census tract (unlike an island such as Roosevelt Island that is comprised of 

multiple census tracts). 
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Figure 8. LISA Cluster Map for Percentage of Commuters Using Public Transportation 

The statistical measure, Moran’s I, is used to measure the spatial autocorrelation in the 

dataset and can be compared to a randomized spatial set to test the hypothesis of the presence of 

spatial autocorrelation (Cliff and Ord, 1981). A plot of the Moran’s I is presented in Figure 9. 

The Moran’s I was calculated to be 0.58047 with a corresponding z-score of 45.36 and p-value 

of 0.002 based on 999 random permutations. This indicated that there is spatial heterogeneity at a 

99.8% level of confidence.   
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Figure 9. Moran’s I for 1st Order Queen Matrix (Percentage of Commuters Using Public 

Transportation) 

4.2 Model for Spatial Dependence 

It was determined that the commuter transit use data exhibits spatial processes 

demonstrated by a lagged dependent variable and two cross-regressive terms. The spatial 

processes are best captured using a 1st order queen matrix. Figure 10 provides a histogram of the 

1st-order queen connectivity of census tracts in NYC in terms of the number of neighbors each 

tract has. 

 

 

% of Commuters Using Public Transportation 
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Figure 10. Connectivity Frequency Distribution for 1st Order Queen Matrix (Percentage of 

Commuters Using Public Transportation) 

The resulting Spatial Durbin model is presented in Table 2. The results were used to 

investigate the influence each variable had on the expected percentage of commuters using 

public transportation in each census tract.  
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Table 2. Commuters Using Public Transportation Modeling Specification Results 

Response Variable: Percent of Commuters using Public Transit in the Census Tract (0.000 – 1.000) 

  Non-spatial 
Spatial Durbin w/ 

White Adj. Std. Errors 

Independent Variables Coefficient Coefficient 

Constant 0.2007*** -0.1243*** 

Mean travel time to work  (minutes) 0.0086*** 0.0068*** 

Employed population (age 16 and older in 1,000s) 0.0295*** 0.0162*** 

Per capita income (in $10,000s) 0.0410*** 0.0127*** 

Median family income  (in 2014 inflation adjusted dollars) -0.0409*** -0.0120*** 

Total assessed value of all tax lots (in $100,000,000) -0.0293*** -0.0206*** 

Percent with health insurance (0.000 – 1.000) 0.0592**  0.1298*** 

Cross-Regressive Variables (1st Order Queen Weights Matrix)    

Number of buildings (total for all tax lots)  -0.0001*** 

Percent commercial floor area (com/total; 0.000 – 1.000)  0.1110*** 

Spatial Lag Variable (1st Order Queen Weights Matrix)    

Percent of commuters using public transit (0.000 – 1.000)  0.5789*** 

Model Statistics  
  

Number of Observations 2166 2166 

R-squared  0.3248   

Adjusted R-squared 0.3232   

Pseudo R-squared  0.6993 

Spatial Pseudo R-squared   0.5167 

***99% Level of Confidence, **95% Level of Confidence, *90% Level of Confidence 

 

The estimated coefficients were determined to be statistically significant at the 99% level 

of confidence. The resulting model experienced an increased statistical fit compared to the non-

spatial model exhibited by a spatial pseudo R-squared value 0.5167.  

The results show that census tracts with a higher average commute time have a higher 

percentage of commuters using public transportation. This may indicate that more secluded 

census tracts are better served by public transportation compared to alternative travel modes such 

as driving your own vehicle. It was shown that census tracts with a greater employed population 
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have a higher percentage of commuters using public transit. Two variables were included in the 

model to capture the relative wealth of the individuals in the census tract. An increase in per 

capita income increases the expected percentage commuters relying on public transportation 

whereas the median household income had an inverse relationship with the dependent variable. 

Census tracts with a higher household income would be expected to have a greater number of 

households that can afford at least one vehicle, which is the main alternative to public 

transportation use for commuting. This relationship is supported by the total assessed value 

variable. Census blocks with more valuable real estate would be expected to house a greater 

percentage of commuters that could more easily afford the costs associated with car ownership in 

the city. It would also be expected that these employed people would be more likely to have jobs 

with flexible work hours allowing them to avoid rush hour traffic. An increase in health 

insurance increases the percentage of commuter trips using public transportation. This may 

indicate that there is a stigma or distrust of public agencies among certain subsets of the 

population regardless of whether the agency provides health insurance or access to 

transportation. 

The framework identified two statistically significant cross-regressive terms. An increase 

in the number of buildings in neighboring census tracts reduces the percentage of commuters 

using public transportation. This may indicate that people feel safer walking to work if they are 

in more built-up areas and therefore wouldn’t rely as heavily on the bus or subway. Also, the 

number of buildings might translate to an increased number employment opportunities allowing 

a larger percentage of commuters to walk to work as opposed to using public transportation. It 

was determined that as the ratio of commercial floor space relative to total floor space of all 

buildings increases in neighboring tracts, the percentage of commuters using public 
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transportation increases. Deliveries and customers arriving to these commercial spaces may 

make driving through these census tracts difficult thereby increasing the percentage of 

commuters using public transportation options to avoid driving to work. 

Lastly, the lagged dependent variable was determined to be statistically significant. This 

means that an increase in the percentage of commuters who use public transportation increases in 

neighboring tracts increases the percentage of commuters who use public transportation in the 

given tract. This impact propagates back from the neighbors’ neighboring tracts, and so on, 

providing for global spillovers. These impacts were shown in the raw data quantile and Lisa 

plots, Figure 7 and Figure 8, respectively. This means that use of public transportation is 

increased in a region if its use is high in neighboring regions, perhaps reflecting social norms. 

This also means that social pressures may reduce public transportation use if users feel that their 

neighbors aren’t using public transportation. The hypothesis that these global effects were 

instead a function of an unobserved underlying spatial process was rejected because the spatial 

error coefficient was not statistically significant.  
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5 RESULTS: SUBWAY RIDERSHIP 

A metropolis’s subway system is typically the most expensive public transportation 

network. As such it is especially importation to understand the underlying causes of ridership 

fluctuations so that demand can be accurately forecasted. The current research focused on the 

five year change in ridership at subway stations between 2011 and 2016. The land use 

characteristics in the immediate area of the subway station and the socioeconomic characteristics 

of those individuals living in the area was used to investigate ridership change. The area 

associated with each station was defined according to the shortest arc distance between a location 

and subway station.  Figure 11 illustrates this process. In the figure, all locations whose closest 

subway station (black dots) are considered to be the station’s attributable area (blue polygon). 

The socioeconomic and land use characteristics of the census tracts (gray polygons) were joined 

with the subway data using GIS applications in the software R (R Core Team, 2017). These 

census-tract level characteristics were weighted according the percentage of the attributable area 

comprised by each tract. Some manual data cleaning was required to remove census tracts 

attributed to a given subway station that did not have a way for the individuals of that census 

tract to access the subway station (this typically occurred in the limited instances where a 

station’s attributed area crossed a natural boarder such as water). 
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Figure 11. Subway Station Attributable Area 

As is evident in Figure 11, the geographic area attributed to each subway station is much 

greater as one moves east from the Bronx and Manhattan to Queens and Brooklyn due to a 

decrease in station density. For this reason the subsequent subway ridership analysis was limited 

to the boroughs of Manhattan and the Bronx. In these regions individuals have greater access to 

the subway network with an increased likelihood of using a station that isn’t the closest to their 

residence if it serves a different rail-line thereby reducing an individual’s overall trip duration. It 

is therefore expected that spatial processes will be especially pronounced in these boroughs. 
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5.1 Spatial Autocorrelation 

Figure 12 illustrates spatial distribution of the change in subway ridership between 2011 

and 2016. A preliminary indication of spatial autocorrelation is evident in the appearance of 

spatial clustering of higher values in mid and lower Manhattan and northwestern sections of the 

Bronx.   

   

Figure 12. Quantile Plot for Change in Subway Ridership 2011-2016 (in Millions) 

Distance-based weights matrices were used to investigate at what distance are the lagged 

independent and dependent variables significant. The first defined neighbors as subway stations 

separated by less than 1.0 miles the second defined neighbors as stations separated by less than 

1.5 miles. An example of 1.0 mile neighbor is provided in Figure 13 where the 8 stations 

indicated by gray dots are defined as the neighbors of the station indicated with a black dot.  
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Figure 13. Example Neighbor Diagram (1.0 Mile Distance Matrix) 

Figure 14 provides the corresponding histogram of the 1.0 mile connectivity of subway 

stations in NYC in terms of the number of neighbors for each station. 

 

Figure 14. Connectivity Frequency Distribution for 1.0 Mile Weights Matrix 
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A plot of the Moran’s I value for the change in subway ridership for 1.0 mile neighbor’s 

weight matrix is presented in Figure 15. The Moran’s I was calculated to be 0.096 with a 

corresponding z-score of 3.48 and p-value of 0.002 determined using 999 random permutations. 

This indicated spatial heterogeneity at a 99.8% level of confidence.  This process was repeated 

for the 1.5 mile neighbor weights matrix (Figure 16) with a corresponding Moran’s I of 0.069 

which is statistically significant at a 99.1% level of confidence. 

 

 

Figure 15. Moran’s I for Change in Ridership 2011-2016 (1.0 Mile Distance Matrix)   
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Figure 16. Moran’s I for Change in Ridership 2011-2016 (1.5 Mile Distance Matrix)  

5.2 Model for Spatial Dependence 

The change in subway ridership is best modeled using lagged dependent and independent 

variables. It was determined that the spatial lag of the dependent variables was best captured 

using a 1.0 mile distance-based weights matrix, whereas the lagged independent variable should 

be weighted using a 1.5 mile distance based matrix. The LM test for spatial lag was significant at 

a 90% level of confidence whereas the LM test for spatial error was not statistically significant. 

The robust LM test for spatial lag and the robust LM for spatial error were both statically 

significant at a 95% level of confidence. This indicates that the best model for the data is one that 

incorporates spatial lag and may need to incorporate spatial error. A General Spatial Durbin 

model (incorporating both spatial lag and error) was estimated using generalized methods of 

moments. The spatial error coefficient was determined to be statically insignificant. Therefore 
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the final model specification was a Spatial Durbin with three independent variables, two cross-

regressive variables and a lagged dependent variable. Results of the Anselin-Kelejian Test do not 

indicate the presence of un-accounted for spatial processes at a statistically significant level.  

Table 3 provides the results of the non-spatial and Spatial Durbin models. The non-spatial model 

was calculated to illustrate the importance of the underlying spatial processes. The non-spatial 

model had an adjusted r-squared value of 0.414. The inclusion of the lagged variables increased 

the model fit as evidenced by the pseudo and spatial pseudo R-squared values of 0.471 and 

0.461, respectively. What is important to note is the change in the estimated parameters in the 

Spatial Durbin model compared to the non-spatial base case.  

Table 3. Commuters Using Public Transit Modeling Specification Results 

Response Variable: Change in Ridership from 2011-2016 (in Millions) 

  Non-spatial Spatial Durbin 

Independent Variables Coefficient Coefficient 

Constant -0.4111*** -0.3154*** 

Number of train lines  0.3191*** 0.2969*** 

Total units (in 1,000s) 0.1403 *** 0.0988** 

Mean household income (in $10,000s) -0.0200 *** -0.0390*** 

Cross-Regressive Variables (1.0 Mile Weights Matrix)    

Gross commercial area (in 1,000,000ft2)  0.1000** 

Median family income (in $10,000s)  0.0370*** 

Spatial Lag Variable (1.5 Mile Weights Matrix)    

Change in Ridership from 2011-2016 (in Millions)  -0.7384* 

Model Statistics  
  

Number of Observations 185 185 

R-squared  0.423   

Adjusted R-squared 0.414   

Pseudo R-squared  0.471 

Spatial Pseudo R-squared   0.461 

***99% Level of Confidence, **95% Level of Confidence, *90% Level of Confidence 
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Results of the Spatial Durbin model indicate that subway stations that serve more train 

lines experienced a greater increase in ridership. This result is especially interesting because 

variables that quantified the total ridership in 2011 and average ridership per line in 2016 were 

both statistically insignificant. This means that it is not necessary the volume of initial 

passengers that is best indication of future demand change, rather it is the extent of services, in 

this case the number of available train lines (routes). The results also indicate that stations 

located in areas comprised of census tracts with a greater number of tax units (residential, 

commercial, etc.) and lower mean household incomes experienced a greater increase in ridership. 

The result of the income is consistent with previous research and captures the greater reliance on 

subway for lower income households. Two statistically significant cross-regressive variables 

were identified. Subway stations located in areas surrounded by census tracts with more 

commercial property or higher median family income are expected to have a greater increase in 

ridership. Lastly the estimated parameter for the spatial lag variable was negative and statistically 

significant. This indicates that the ridership at a given station decrease in response to an increase 

in ridership at neighboring stations. This may indicate that a portion of the change in ridership at 

a station is due to riders in a region changing which station they use instead of riders shifting 

from alternative modes of transportation.  
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6 SUMMARY AND CONCLUSIONS 

In an effort to help metropolitan planning agencies better understand current and future 

demand of their public transportation networks this research investigates the underlying social, 

economic, and land use factors that impact transit ridership regardless of transit mode, then uses 

this insight to estimate specific models to help forecast changes in subway ridership. A spatial 

dataset that covered all of the nearly 2,200 census tracts in the city was used as the basis of the 

research. The dataset consisted of US Census social and economic data paired with New York 

City Department of City Planning land use data and subway ridership data. The results showed 

that the underlying causes for variability in public transportation ridership was not constant over 

space. Moreover, the spatial processes were determined to be statistically significant in both the 

commuter transit and subway ridership model. To account for these spatial processes (spatial 

autocorrelation, heterogeneity, and dependence) the models were estimated using the Spatial 

Durbin specification.  

Census tracts with a higher average commute time, greater employed population, higher 

per capita income and lower median household income were determined to have a greater 

percentage of commuters using public transportation. Local spatial effects also played a 

significant role in public transportation use for work trips. Census tracts were found to have a 

greater percentage of commuters using public transportation if neighboring census tracts had 

more commercial space or fewer buildings. The lagged dependent variable accounted for global 

spatial effects. The significance of this variable paired with the insignificance of the spatial error 

term shows that social norms and expectations can influence people’s mode choice.  

Examination of subway ridership between 2011 and 2016 shows that subway stations 
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serving more train lines or are in areas comprised of census tracts with a greater number of tax 

units (residential, commercial, etc.) or lower mean household incomes experienced a greater 

increase in ridership over the study period. Furthermore, subway stations located in areas 

surrounded by census tracts with more commercial property or higher median family income are 

also expected to have a greater increase in ridership. Lastly, ridership at a given station decreases 

due to an increase in ridership at neighboring stations. This may indicate that a change in 

ridership at a station is due, in part, to riders in a region changing which station they use instead 

of riders shifting from alternative modes of transportation. The completed research can help 

public agencies better address resource allocation by identifying locations that are over or 

underperforming in terms of expected ridership or identifying locations for network expansion. 
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