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The Region 2 University Transportation Research Center (UTRC) is one of ten original University
Transportation Centers established in 1987 by the U.S. Congress. These Centers were established
with the recognition that transportation plays a key role in the nation's economy and the quality
of life of its citizens. University faculty members provide a critical link in resolving our national
and regional transportation problems while training the professionals who address our transpor-
tation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology
in the field of transportation. The theme of the Center is "Planning and Managing Regional
Transportation Systems in a Changing World." Presently, under the direction of Dr. Camille Kamga,
the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S.
Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region,
UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York,
the lead institution of the consortium. The Center, through its consortium, an Agency-Industry
Council and its Director and Staff, supports research, education, and technology transfer under its
theme. UTRC’s three main goals are:

Research

The research program objectives are (1) to develop a theme based transportation research
program that is responsive to the needs of regional transportation organizations and stakehold-
ers, and (2) to conduct that program in cooperation with the partners. The program includes both
studies that are identified with research partners of projects targeted to the theme, and targeted,
short-term projects. The program develops competitive proposals, which are evaluated to insure
the mostresponsive UTRC team conducts the work. The research program is responsive to the
UTRC theme: “Planning and Managing Regional Transportation Systems in a Changing World.” The
complex transportation system of transit and infrastructure, and the rapidly changing environ-
ment impacts the nation’s largest city and metropolitan area. The New York/New Jersey
Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region’s
intermodal and multimodal systems must serve all customers and stakeholders within the region
and globally.Under the current grant, the new research projects and the ongoing research projects
concentrate the program efforts on the categories of Transportation Systems Performance and
Information Infrastructure to provide needed services to the New Jersey Department of Transpor-
tation, New York City Department of Transportation, New York Metropolitan Transportation
Council , New York State Department of Transportation, and the New York State Energy and
Research Development Authorityand others, all while enhancing the center’s theme.

Education and Workforce Development

The modern professional must combine the technical skills of engineering and planning with
knowledge of economics, environmental science, management, finance, and law as well as
negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the
web, and knowledgeable about advances in information technology. UTRC’s education and
training efforts provide a multidisciplinary program of course work and experiential learning to
train students and provide advanced training or retraining of practitioners to plan and manage
regional transportation systems. UTRC must meet the need to educate the undergraduate and
graduate student with a foundation of transportation fundamentals that allows for solving
complex problems in a world much more dynamic than even a decade ago. Simultaneously, the
demand for continuing education is growing - either because of professional license requirements
or because the workplace demands it — and provides the opportunity to combine State of Practice
education with tailored ways of delivering content.

Technology Transfer

UTRC’s Technology Transfer Program goes beyond what might be considered “traditional”
technology transfer activities. Its main objectives are (1) to increase the awareness and level of
information concerning transportation issues facing Region 2; (2) to improve the knowledge base
and approach to problem solving of the region’s transportation workforce, from those operating
the systems to those at the most senior level of managing the system; and by doing so, to improve
the overall professional capability of the transportation workforce; (3) to stimulate discussion and
debate concerning the integration of new technologies into our culture, our work and our
transportation systems; (4) to provide the more traditional but extremely important job of
disseminating research and project reports, studies, analysis and use of tools to the education,
research and practicing community both nationally and internationally; and (5) to provide
unbiased information and testimony to decision-makers concerning regional transportation
issues consistent with the UTRC theme.
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Executive Summary

The high uncertainty associated with emergency situations such as blasts, fires, and
structural failures makes it extremely difficult to develop evacuation plans that can
accommodate in advance every possible systematic failure that may occur in the
predetermined tenable evacuation paths [21]. The unpredictability of human decision
making under stress adds to the complexity of the problem. It is extremely important to
build evacuation paths in real-time. The main objective is to be able to map the
environment in real-time evaluating structural health that can be then used to create
feasible evacuation paths for pedestrians. In this study, we performed the following: 1.
Studied pedestrian data from Bluetooth and Wi-Fi sensors to assess its potential in
building pedestrian evacuation network under emergency conditions, 2. explored state-of-

the-art SLAM-based autonomous mapping technology.

We initially performed preliminary analysis using Bluetooth and Wi-Fi data obtained
from a pilot study at the Port Authority Bus Terminal. Sensors that registered an
encrypted MAC address for active Bluetooth and Wi-Fi devices were deployed. This
enabled us to obtain information about the density, flow, and origin-destinations of the
users of the terminal. This data was collected and used to build models that simulate users
moving through the terminal. All the data was filtered, hypothesis testing was performed
to asses usability of the model, where it was then placed in a simulated M/M/1 queue,
where data about wait times and lengths was produced. Even though this data proved to
be useful to determining day to day operations of the terminal, and historical data could
give us some basis to build models for nonrecurring conditions, using this data to
determine operations for emergency conditions proved to be inappropriate. Therefore, in
this study, we explored state of the art technology and algorithms, i.e. SLAM, for real-

time mapping of indoor and outdoor areas with limited access to GPS.

Simultaneous localization and mapping (SLAM) has been an emerging research topic in

the fields of robotics, autonomous driving, and unmanned aerial vehicles over the past

111
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thirty years. SLAM can be extremely useful for exploring and mapping new
environments without a prior map and with limited access to GPS which is ideal for use
in emergency conditions. We present a cost-friendly vehicle research platform and a
robust implementation of SLAM. Our SLAM algorithm fuses visual stereo image and 2D
light detection and ranging (Lidar) data and uses loop closure for accurate odometry
estimation. Our algorithm is benchmarked against other popular SLAM algorithms using
the publicly available KITTI dataset and shown to be very accurate. For educational

purposes, we publicly share the models and code presented in this work.

v
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1 INTRODUCTION

The high uncertainty associated with emergency situations such as blasts, fires, and
structural failures makes it extremely difficult to develop evacuation plans that can
accommodate in advance every possible systematic failure that may occur in the
predetermined tenable evacuation paths [21]. The unpredictability of human decision
making under stress added to the complexity of the problem. Therefore, it is vital to
understand pedestrian networks in high occupancy buildings within highly concentrated
facilities such as large malls, high-rise buildings, as well as public transit hubs
particularly under emergency conditions. It is also especially important to be able to build

evacuation paths in real-time.

As a general framework, certain pedestrian data, representing pedestrian flow and paths,
can be used to develop data-driven on-line synthesis of pedestrian evacuation
subnetworks, depicted in Figure 1, that make use of advances in sensing technologies.
The data is obtained in real-time from the various sensors installed in the structure and is
then used for estimation of pedestrian networks at multiple layers: topological,
operational, and pattern-based. All three layers will then contribute to updating the graph
model of the pedestrian network by updating the adjacency, degree, and weight matrices
indicating usability of links. After updating the network graph model, developing
evacuation paths can be performed. The evacuation problem is then posed as a
subnetwork synthesis problem. At this stage, we are given a number of usable links for
the overall network with different weights indicating the level of usability, and the
problem is to synthesize evacuation paths that can be considered as subnetworks, Figure
2, and thus modeled as subgraphs of the original network. The chosen paths are then
evaluated based on how they affect the overall network as a system in the sense of flow
maximization as long as controllability is maintained. Flow maximization at a given
moment is a local optimum; however, when given the choice, using links that sustain
controllability of the system may lead to a global optimum. This leads us to the next step
which is the controllability check. If the system us uncontrollable update the links choice;

otherwise, implement the synthesized plans and reevaluate the system.
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Unfortunately, the existing pedestrian infrastructure rarely supports the collection of such
rich data to make such an intricate emergency response algorithm possible. The proposed
work assesses existing commonly used cost-effective pedestrian sensors for building such
models. Also, it explores new technology and algorithms for real time mapping. This
study fills in the gaps in data and map creation under emergency in order to advance
potential contributions to the modeling, sensing fusion, estimation, and optimal

evacuation aspects of the pedestrian flow networks.

Extreme Events

!

3| Physical Pedestrian |g  pedestrians Behavior
Network

Y

Sensing Network

¢ Estimation

Pedestrians Network Properties

Topoloagy Operational Patterns

\ ﬁapplng
Y

Updated Network
Graph Model

}:\F Choaose Evacuation Links

Evacuation
Subnetwork Synthesis

Graph Spectrum
Evaluation

Is
Controllable?

Implement and Update
Reevaluate Evacuation Plans

Figure 1 Proposed Framework of Subnetworks Synthesis for the Pedestrian
Evacuation Problem.
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Exit

Exit

Figure 2 Example of a Building floor and its Corresponding Network Graph.

1.1 Research Objective and Approach

The main objective of this study is to be able to map the environment in real time
evaluating structural health that can be then used as feasible evacuation paths for
pedestrians. In this study, we performed the following: 1. Studied pedestrian data from
Bluetooth and Wi-Fi sensors to assess its potential in building pedestrian an evacuation
network under emergency conditions, 2. explored state-of-the-art autonomous mapping
technology. The proposed research can be seen as a significant contribution to the current
state-of-the art and state-of-the practice because those heavily depend on optimal

evacuation paths obtained from off-line tools and plans.
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We initially studied Bluetooth and Wi-Fi data from a pilot study that was performed at
the Port Authority Bus Terminal which enabled us to obtain information about the
density, flow, and origin-destinations of the users of the terminal. This data was collected
and used to build models that simulate users moving through the terminal. All the data
was filtered, hypothesis testing was performed to asses usability of the model, where it
was then placed in a simulated M/M/1 queue, where data about wait times and lengths
was produced. We then explored SLAM algorithms for real time mapping of indoor and

outdoor areas with limited access to GPS.
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2 DATA ASSESSMENT FROM WI-FI & BLUETOOTH SENSORS

Port Authority Bus Terminal is a key part of the transportation system in New York City,
servicing 225,000 people on an average weekday [22]. Creating a model that predicts the
movement of users within the terminal would help identify bottlenecks and would be
vital to streamlining the process. Port Authority is unique when compared to other
transportation hubs in the city. Unlike the vast subway system where user movement can
be easily recorded by the turnstiles that every user goes through, users of Port Authority
do not go through such a centralized system. As a result, this study is based on cellphone
data that was collected during a ten-week period during the summer of 2016. Six tablets
were placed by two entrances (North, and South) and four different gates (202, 204, 223,
and 233). Each tablet collected a unique hardware address and a timestamp to each phone
that is Wi-Fi enabled and put it into a text file. This method offers a good sample of the
people moving through the system, Table 1 presents the available data with good dates.
These text files were put into a mongo database and where they were queried and fit for
hypothesis testing. Fitting was done to both arrival (lambda) and exit (mu) rates and then
simulated in a M/M/1 queue. Which then can be used to build a Markov Chain model
such as Xu, Liu et al [23].

Table 1 Dates with good data.

Gate Dates with Data
202 5/03-5/10, 5/18-5/22, 5/24-6/04, 6/16-7/11
204 5/03-7/11
223 5/24-7/04
233 5/03-5/09, 5/20-5/27, 6/01-6/04
North 5/13-5/17
South 5/03-7/11
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2.1 DATA FILTERING AND FITTING

After running preliminary tests on the data, it was quickly realized that there are many
users who are only seen once and never seen again. Therefore, the first task of filtering
was to remove these users. Users who were seen only once were regarded as unusable
data. Another conclusion from the preliminary tests was that the data from all ten weeks
would not fit a Poission distribution with a constant lambda (arrival rate). Therefore, it
was decided to select a several different time windows in a day and restrict the fitting to a
few weeks period disregarding certain days of the week. Following this it was necessary
to define what constitutes an arrival and an exit. If the system is to be regarded as a bus
terminal where people are exiting on busses and arriving from outside, it would make
sense to define an exit when the user leaves the whole system of gates for an extended
period of time (in this work that period of time was two hours) and an arrival when a user
arrives after not being in the system for two hours. There were a few issues with this fit.
The main issue was that for all the different time intervals that were selected for the fit to
the Poission distribution, there were some gates where their arrivals from outside were
greater than their service rate (resulting a rho greater than one). On top of that, with the
probability matrix, even some of the other gates that had their service rate greater than
their arrival rate from outside still had a rho greater than one. This issue could have
stemmed from a greater issue with the incompleteness of the data. The data is incomplete
in two ways. First the tablets for the North entrance and gate 233 shut off for a great
majority of the sampling period, leaving very few days of good data for them.
Subsequently, their arrival rates that were calculated from the days they were on could be
inaccurate because it is not a big enough sample time. Yet, even when putting those gates
to the side, there were still some gates with a rho greater than one. Another possible
source of this issue could be the fact that because there were only sensors at select gates,
certain users were considered exits at places that they did not exit. Fitting results are

shown in Table 2.
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Table 2 Lambda and Chi Squared, from 2-6pm excluding weekends with 40 bins.

Gate Lambda Chi-Squared
202 82.83 28

223

233

204 75.68 69

North

South 66.62 180

Alternatively, if the system is regarded to be a set of points where people walk through an
arrival would be the first time a person comes into that point and an exit would be the
first time the person leaves that point. This method is easier to implement for many
different reasons. First it allows for bad gates where rho is greater than one to be thrown
out completely. In addition, it does not have the complexity of a probability matrix where
there is a back and forth movement of users from one gate to another. However, this gate

does not provide a true queuing model of the users in the terminal.

arrival rate at gate:204 with 40 bins and a 15 minute resolution

0.08 4

0.06 4

0.04 4

0.02 4

0.00 -
0 5 10 15 20 25 30 35 40

chi squared of 16 Labmba of [ 48.70948178], scaled [ 12.73450504]

Figure 3 Poission Distribution Fitted to gate 204 arrival data.
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The final results for gates 204 (Depicted in Figure 3), and 223 were fit from 06/20-7/04
excluding Saturdays, Sundays from 7pm to midnight. The result for gate 233 was fit from
05/04- 05/07 from 10pm to midnight.

The results, Table 3, show that at gates 204 and 233 users move quickly, less than

two minutes. Gate 223 on the other hand, has a little bit longer of a wait ~5 minutes.

Table 3 Computed Data for each Gate.

GATE ARRIVAL SERVICE EXPECTED # EXPECTED EXPECTED
RATE RATE OF USERS IN TIME IN TIME IN
(15-MIN (15-MIN QUEUE QUEUING QUEUE
INTERVALS) INTERVALS) SYSTEM (MINUTES)

(MINUTES)
204 ‘ 48.70 69.80 1.61 0.71 0.49
223 ‘ 61.57 72.48 4.79 1.37 1.17

233 ‘ 33.54 65.97 0.52 0.46 0.24

2.2 Proposed Model and Estimation

A Queuing Network-based Network Model is presented, as depicted in Figure 4. The
proposed model requires the computation of the transition matrix. We then define Ajj, the

percentage from gate 1 to gate j using maximum likelihood.

11
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Parameter Estimation 1

Arrival Rates Distribution; LO, L1, L2, L3, L4, L5
Service Rates Distribution: MO, M1, M2, M3, M4, M5
Transition Matrix: Pij, where i = j = 0.,.5 (PcE = 1-Sum(Pc|))

P2E, P3EJPAE, PSE

Figure 4 Queuing Network-based Network Model

Herein, the parameter estimation techniques for the proposed model are presented. First

In order to compute the transition matrix, a transition for a user would be counted in the

three following situations:

1. If the user has been seen within two hours of her last appearance and is at

a different gate. This would constitute a transition from last gate to current

gate.

2. If it has been more two hours. This would constitute a transition from last

gate to sink and from source to current gate.

3. The absolute first and absolute last occurrence. The absolute first counts as

source to first gate where the absolute last counts as last gate to sink.

As is apparent in Table 4, all the values for the northern gate are zero. This is due to the

fact that there was no intersection where all the sensors were working, refer to Table 2;

therefore, the best selection was chosen. This implies that the model will be modified to

not include the North gate.
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Table 4 Transition Matrix.

North | South | Source | 202 204 223 233
North | — 0.00 0.00 0.00 0.00 0.00 0.00
South | 0.00 — 0.31 0.03 0.04 0.05 0.01
Sink | 0.00 069 | — 0.14 0.25 0.47 0.50
202 0.00 0.12 0.37 — 0.59 0.13 0.15
204 0.00 0.08 0.16 0.75 — 0.06 0.14
223 0.00 0.07 0.09 0.03 0.03 — 0.20
233 0.00 0.04 0.07 0.05 0.09 029 | —

The other parameters to be estimated are the external arrival and the service rate

distributions. The external arrival distribution (time dependent) must be found for each

gate and entrance. This includes persons seen for the first time outside of a 2-hour time

interval. This should not include arrivals of people that are already in the system and

transitioning from one node to another since this is included in the transition matrix. The

Service rate distribution (time dependent) must also be found for each gate and entrance.

The origin-destination matrix, Table 5 (Read it Horizontal to vertical as in SOUTH-> 204

would be 2w column 5t Row), was calculated by first taking each address’ known

timestamps and gate locations. The spotting data was then sorted by time. An origin: is

the first spotting of an address and the first spotting after a two-hour gap. 4 destination:

is the last spotting of an address and the last spotting of an address before a two-hour gap.

North
South
202

223
204

Table S Origin Destination matrix (Top is counts bottom is percentages.)
223

1,648

North
0
17,290
2,829

1,854
12,312

South

1

20,351
0
62,457

71,677
04,644

202
1,986
54,229
0

20,535
219,792

13

49,599
16,687

0

23,052

8,
67,
115,

20,

204
572
039
459

978
0

233
1,513
16,670
6,663

10,055
9,939
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233 1,242 23,596 24,830 15,388 20,799 0
TOTAL 35,527 282,725 321,372 106,374 232,847 44,840

North South 202 223 204 233
North 0.00% 7.20% 0.62% 1.55% 3.68% 3.37%
South 48.67% 0.00% 16.87% 46.63% 28.79% 37.18%
202 7.96% 22.09% 0.00% 15.69% 49.59% 14.86%
223 5.22% 25.35% 6.39% 0.00% 9.01% 22.42%
204 34.66% 37.01% 68.39% 21.67% 0.00% 22.17%
233 3.50% 8.35% 7.73% 14.47% 8.93% 0.00%
TOTAL 100.00% 100.00% 100.00% 100.00%  100.00%  100.00%

2.3 Conclusion

The results are the first step into continuing the analysis on Port Authority. To get a fuller
picture, it would be useful to get a more complete dataset. More complete in both the
weeks of data and the number of gates where the data is recorded. Additionally, using the

strength of the Wi-Fi signal may be an additional method to filter the data.

The results also demonstrated that the data could not be fit into a Poission process. This
could be due to missing information and lack of consistency. Other options for continuing
analysis include fitting the data with an arrival rate that depends on time, or fitting the
data to a time series instead of a Poission distribution. Methods such as those that were
used by Hanseler, Bierlaire et al [24]. could prove to be useful. Therefore, moving
forward, this research looked at the possibility of using SLAM technology to be able to

create online maps of the environment which proves to be an essential feature for

emergency résponse.
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3 EMERGENCY MAPPER WITH SLAM

Simultaneous localization and mapping (SLAM) is the process by which a mobile robot
can build a map of an environment and at the same time use this map to compute its own
location [7]. In other words, it comprises the simultaneous estimation of the state of a
robot equipped with on-board sensors, and the construction of a model (the map) of the
environment that the sensors are perceiving. In simple instances, the robot state is
described by its pose (position and orientation), although other quantities may be
included in the state, such as the robot’s velocity, sensor biases, and calibration
parameters. The map, on the other hand, is a representation of aspects of interest (e.g., the
position of landmarks, obstacles, etc.) describing the environment in which the robot

operates [4].

There are many situations where a map is needed. For example, a map may be in need to
support other tasks like informed path planning. However, most importantly, the map
allows limiting the errors committed in estimating the state of the robot [4]. In the
absence of a map, dead-reckoning would quickly drift over time; on the other hand, using
a map, e.g., a set of distinguishable landmarks, the robot can reset its localization error by
revisiting known areas, also referred to as loop closure. Therefore, SLAM finds

applications in many scenarios in which a prior map is not available and needs to be built

[4].

SLAM has been formulated and solved as a theoretical problem in a number of different
forms [7]. It has also been implemented in a number of different domains including
indoor robots, outdoor robots, and underwater and airborne systems. At a theoretical and
conceptual level, SLAM can now be considered to be a solved problem pertaining to the
estimation of the trajectory of a moving robot and building a map of its environment
simultaneously [17]. However, in practice, substantial issues remain in realizing more
general SLAM solutions and notably in building and using perceptually rich maps as part
of a SLAM algorithm [7]. Even though the formulation of the SLAM problem has been
well established and the robotics research community has seen tremendous progress over

the past few decades, there are still a many open problems left unsolved including fail-
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safe SLAM algorithms, efficient map representations, and resource-aware SLAM
systems [4]. Furthermore, a general SLAM solution that can run in real time and adapt to
the available computing platforms has not yet been proposed. Also, many of the existing
SLAM algorithms fail to identify previously visited locations and correct the

corresponding odometry estimations, thus performing loop closure [6].

We introduce a robust and flexible multi-sensor data fusion architecture that leverages
state-of-the-art Lidar algorithms. Our system provides custom configurations to allow
further research, for example, in innovative image registration algorithms, frame
matching algorithms, and backend nonlinear least-squares pose-graph solvers. We have
also supplemented the multi-sensor data fusion model with the necessary hardware,
control, and planning module to provide a cost- friendly autonomous driving platform.
This platform, with the physical form of a differential drive robot, is capable of driving
around in an unknown environment, creating a map of its surroundings and performing

autonomous navigation to any targeted location in the self-created map.

In this section, we first provide a high-level overview of multi-sensor data fusion. Then,
we present our multi-sensor data fusion pipeline. The system implementation, along with
hardware and software dependencies, is then described. Then we present our
experimental results. Finally, we present our conclusions and explore possible future

work.

3.1 Background

An autonomous mobile robot operates by processing information from its surroundings
and then making intelligent and accurate driving decisions. This means that the
perception system, the very first module to acquire peripheral information on which other
parts of the platform depend, needs to be as robust and accurate as possible to safeguard
the performance of the whole system. A system operating with a single sensor often fails
to capture the rich physical attributes of the environment. The camera, a typical visual
perception sensor, is likely to fail in environments where the lighting intensity is

dramatically changed or the lighting intensity is particularly low. On the other hand, a
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radar sensor has a longer sensing distance and lower computational demands but is less
accurate than the light imaging detection and ranging (Lidar) in terms of angular
accuracy. Due to the inherent vulnerability of the single-sensor system, multi-sensor data
fusion has become an overarching paradigm for avoiding single-point failure and
enhancing the system with reduction in ambiguity and uncertainty, increase in accuracy,
robustness against interference, etc. [15]. For instance, Tesla’s Autopilot leverages a
hardware suit of eight cameras, a forward-looking radar, and twelve ultrasonic sensors to

ensure 360 degrees of visibility for its perception system.

In the last decade, significant progress has been made in the field of multi-sensor data
fusion to solve problems related to combining multi-model data efficiently and support
intelligent robots in decision making [2], [3], [12]. The diversity offered by multiple
sensors can positively contribute to the perception task of the intelligent robot.
Overcoming heterogeneity of different sensors through robust fusion algorithms lead to
effective utilization of the redundancy across the sensors [5]. However, data coming from
different sources are typically in different formats and also propagate different sensing
uncertainties. Multi-sensor data fusion research is typically focused on the effective
alignment of different sensor streams which could be either partially, geometrically, or
temporally aligned [13]. The introduction of the multi-sensor data fusion model, though
effective in theory, does lead to some practical challenges including how to handle noise
in the operation, data imputation, the determination of where in the processing pipeline to
perform the fusion algorithm, and how and when to keep or drop the previously acquired
information. Moreover, due to inevitable sensor manufacturing variations, extreme
external calibration efforts across the sensors is often needed to ensure the performance

of the fusion architecture.

3.2 Approach

To address the problems mentioned in the previous Section and to maximize the cost
efficiency along with the mapping accuracy, we introduced a loosely coupled time-
stamp-based multi-sensor data fusion architecture which leverages camera and Lidar data

as default. On top of the default fusion setup, the system provides custom configuration
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freedom for researchers to add additional sensor modality and experiment with various
fusion algorithms. The default fusion architecture, which leverages the state-of-the-art
Lidar SLAM pipeline multiple visual place recognition algorithms, ensures the basic
functionality for accurate mapping with global closure and reduces the unnecessary

exterior calibration effort [19].

In Table 6, the features of a few typical implementations of the SLAM algorithm are
summarized. As can be seen, most existing solutions do not incorporate 2D Lidar, a
camera module, and global loop closure. For example, V-LOAM typically does not
implement loop closure even though it uses both a 3D Lidar and a camera; however,
some form of loop closure is introduced in some relevant work [16]. Another issue is that
all of them except Cartographer require a 3D Lidar component, which is costly. The
proposed solution herein can be used with either 2D or 3D Lidar sensors in tandem with a

camera, and at the same time offers both global loop closure and online operation.

Table 6 Typical Implementations of SLAM.

Global Loop Online

2D Lidar 3D Lidar Camera AR Operation
BLAM @ 1]
Laser SLAM @ @ o}
Cartographer @ @ o @
LoAM ® o}
V-LOAM ® L @
m @ @ @ @ @

While state-of-the-art visual and Lidar SLAM algorithms are equivalent in terms of
accuracy, visual pipelines are more robust for dynamic scenes and less expensive
computationally. Lidar SLAM systems, on the other hand, are more consistent and less
sensitive to changes in illumination and appearance due to their heavy dependence on the
geometric structure of the surrounding. Even though most of modern Lidar SLAM
algorithms have shown impressive results [8], they failed to address the drift problem

over time with the assumption that the world is an "infinite corridor" [4]. Therefore, we
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propose a fusion mechanism that supplements the Lidar SLAM algorithm with visual
stereo image data for place recognition and drift correction. In order to implement Lidar
SLAM, we tested our vehicle with various open-source libraries including Hector SLAM,
Fast SLAM, and Gmapping. In this section, we discuss the various Lidar-SLAM libraries
tested. Then, we introduce our perception system by explaining the selection of the
sensors, the base SLAM module, and the data fusion model proposed for the

heterogeneous sensors involved.

3.2.1 Lidar-SLAM Libraries

Hector SLAM was developed for a system capable of autonomous exploration in Urban
Research and Rescue environments [11]. It serves as a general open-source algorithm,
which only needs minor modifications to operate on a given platform. A remarkable
feature of this algorithm is that it does not necessarily need the odometry data to support
its operation. Another feature of Hector SLAM is its elevation and cost mapping. The
Hector-elevation-mapping module allows us to fuse the point cloud measurements

produced by a stereo camera into an elevation map, resulting in a 2D

grid with another variable height stored in a corresponding variance for each cell.
Odometry, however, is notoriously known to be unreliable in an environment where there
are many altitude changes (such as an uneven floor). Therefore, we decided to test Hector
SLAM on our data. Even though it was able to create a map, the drift was large. This
meant that the odometry data had to be fed to the system so that the algorithm can make

more informed estimations of its pose and create a more accurate map.

Instead of entirely relying on fast Lidar data feature selection and scan-matching, Fast
SLAM uses a particle filter method which uses numerous small particles to perceive a
submap and then creates a complete map by stitching those submaps together. The
particles are generated randomly, and submaps are then compared with each other to test
for agreement about the perceived environment given their poses. In other words, a
particle’s correctness is evaluated by consensus and inference based on the other
submaps. Faulty particles are immediately discarded. Eventually, only the particles that

can make sense of each other’s submaps are kept and used to stitch together the whole
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map. However, the particle-filter-based method is relatively memory intensive since each
particle needs to be kept in a joint state matrix and updated every frame. Also, the
comparison process consumes a tremendous computing power. The problem could be
largely simplified by providing a prior map. The particles’ submaps could then be
compared with the prior map and discarded if the difference is too large. Thus, the
particle number would quickly decrease and converge to allow the construction of a
complete map. This is especially useful in the re-localization problem for self-driving

automobiles where a prior high definition (HD) map is available.

Gmapping has been implemented as described in Grisetti et al. [9] and is then improved
using the Rao-Blackwellized particle filters (RBPF) method, which shares a similar idea
with the particle filter method introduced above. The key idea behind RBPF is to estimate
a posterior of potential trajectories of the robot given its observation and its odometry
measurements. The posterior is then used to compute a posterior over maps and
trajectories and thus gives a relative pose estimation. To do so, RBPF uses a particle filter
in which an individual map is associated with every sample. The robot’s trajectory
changes over the robot’s motion, therefore the proposal distribution is chosen to be the
same as the probabilistic odometry motion model. One of the most common particle
filtering algorithms is the sampling importance resampling (SIR) filter. An SIR filter
incrementally processes the observations and the odometry readings as they become
available. This is done by updating a set of samples representing the posterior about the
map and the trajectory of the vehicle. The algorithm for RBPF is then applied by
computing an improved proposal distribution on every particle so that information
obtained from the sensors can be used while generating the particles. This algorithm has
two main advantages: First, the algorithm draws the particles more effectively;
computing accurate proposal distribution handles not only the movement of the robot but

also the most recent

observation, which causes the uncertainty in the prediction of the robot’s pose to
decrease. Second, the highly accurate proposal distribution allows the system to utilize
the number of effective particles as a robust indicator to decide whether or not a

resampling has to be carried out. This effect further reduces the particle depletion

20



Spectral-Based Controllability Pedestrian Evacuation Network Synthesis using
Multilayered Estimation Models in Real-time

problem, which refers to the scenario where no particle is valid at all. Therefore, we
decided to use the Gmapping algorithm to implement an improved version of the visual

Lidar [9].

3.2.2 Sensors

By using the multi-sensor data fusion pipeline, our algorithm can perform SLAM using a
stereo camera with a 2D or 3D Lidar as shown in Figure 5. With this specific
combination, we can avoid disadvantages of each sensor and make the system more
robust. For example, the camera will not perform as well as the Lidar in dark
environments. However, each kind of Lidar has its own problems: 3D Lidars are costly
and 2D Lidars alone do not offer enough resolution. To solve this issue, we supplement
the 2D Lidar with a stereo camera so that we can extract more information from the
images. This way, researchers can perform accurate SLAM algorithms with a cheaper 2D

Lidar

RPLiDAR A2: Whereas Hokuyo UST-20LX scanners are now the standard 2D Laser
scanners for SLAM research, we found the RPLIDAR A2 scanners to be a cheaper
option. Though 3D Laser scanners have the advantages of high resolution and a 360-
degree range for 3D SLAM algorithm research, their high cost made the actuated 2D
Lidar more suitable for our purpose. With a reasonable cost, the RPLIDAR A2 can
perform 360-degree scans within a range of 12 meters or 18 meters and generate 8000
points per second with a 15 Hz sampling rate. Also, DJI has released Livox Mid-40, a 3D
Lidar with a reasonable price, which future researchers with a generous budget could

consider for dense mapping purposes.

ZED stereo camera: ZED is the best-suited camera for our platform due to its detailed
API documentation and its smooth integration with the Robotics Operating System
(ROS) which most of robotics research uses. With its high resolution and frame rate,
ZED can serve multiple applications such as depth perception, positional tracking and 3D

mapping.
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I

2D lidar 3D lidar Stereo Camera

Figure 5 Used Sensors.

3.2.3 Base SLAM Module

We present a SLAM module which extends the state-of- the-art Lidar odometry
estimator, LOAM [20], with back-end pose-graph optimization to correct drift and a
place recognition system to allow global loop closure [10]. LOAM, with its high
accuracy, robustness and real-time operation, takes in raw 3D point clouds, calculates the
rigid transformation due to the corresponding sensor motion and outputs the global pose
estimation, a local representation of the map, and the registered point clouds. The original
work has been refactored, optimized, and made modular in this work to support custom

configuration and allow smooth adaption to other SLAM backend solutions.

Due to the inherent drifting error in incremental odometry estimators like LOAM, an
online pose estimation back-end is needed in the system to build the pose graph based on
the LOAM odometry estimation and correct LOAM odometry estimation from drifting
error by performing re-localization based on the visual data. Re-localization takes place if
the system identifies previously visited places. To identify previously visited places in the
existing internal map, the system has to periodically query the place recognition module,

which relies on the visual stereo data.

3.2.4 Data Fusion Mechanism

We propose a modular multi-sensor data fusion pipeline, as summarized in Figure 3,
where Lidar is set as the default sensor for odometry estimation and visual stereo data is

leveraged to perform place recognition. The Lidar-based SLAM backend keeps a set of
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keyframes to represent the sensor trajectory, each having an associated time stamp. With
the stereo camera running constantly, the system registers stereo image data to the latest
keyframe and performs cloud matching with all previously registered keyframes to find
potentially matched frames. A pose graph optimization backend is running constantly to
manage the environment mapping and correct odometry estimation by querying the
visual place recognition system. We provide multiple state- of-the-art visual frame
matching algorithms such as visual bag of words and SegMatch. Additionally, the system
is able to incorporate other real-time matching algorithms and fuse with the result of

existing matching algorithms [1].
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with local map representaiont. with Cloud Key frames E WHAT'S NEXT? ‘

Figure 6 Sensor Fusion Architecture

When the system detects a matched frame, it calculates the transformation between the
clouds of the associated keyframes using the iterative closest point (ICP) algorithm and
adds a new edge to the pose graph representation of the existing map. Then, the estimated
pose is fed back to the incremental odometry estimator to correct its internal motion

estimation and perform the re-localization functionality.
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3.3 SYSTEM IMPLEMENTATION

To make our vehicle reasonably affordable and easier to assemble, we designed our
vehicle to be an educational and cost-friendly research platform with minimal software
setup on which versatile applications could be run. The hardware and computing platform
are introduced in this section with key design features including affordability and
versatility. It is worth noting that the components used for the vehicle are resources that

are inexpensive, with a total cost of approximately $1200.

3.3.1 Hardware

We designed a custom differential drive chassis on which any electronics and hardware
can be installed. We relied on easily accessible computer aided design (CAD) software
and prototyping tools including SolidWorks and AutoCAD. Two Pololu 12V gear motors
are used to drive the rear wheels with a 2000-count-per-rev encoder mounted on each
motor. Having two independently-driven rear wheels gives the platform two degrees of
freedom for intuitive manipulation and control. In addition, the built-in encoders enable
wheel speed control and could provide inaccurate odometry information to the system for
reference. Also, a custom PCB board is used to connect electronic components and divide
an electrical power feed from the batteries into subsidiary systems. Two 12V Lithium-ion
batteries are used to supply power to the computing hardware and motors separately,
which prevents the motor’s transient voltage from interfering with the computing

hardware.

3.3.2 Computing Platform

The Nvidia Jetson TX2 is a fast, power-efficient embedded computing device which is
used as the on-board computing processor. Jetson supports Ubuntu naively for ROS
integration and provides the necessary processing power for online 3D mapping
algorithms. The Arduino Uno is used along with the Jetson computer as an expansion to
the GPIO and interrupt pins of the Jetson. Acting as a middleman, it exchanges messages
between the hardware and the Jetson board. A photograph of our device with components

labeled can be seen in Figure 6.
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RP Lidar A2

Figure 7 Platform Overview

3.4 EXPERIMENTAL EVALUATION

To evaluate the accuracy of the odometry estimation of our proposed multi-sensor
data fusion architecture, we fully tested our algorithm against the publicly available
KITTI odometry benchmark dataset [8]. The result was evaluated by the metrics
employed by KITTI and compared with the LOAM module’s result. Our architecture,
with the default setup, has shown equivalent results with LOAM for KITTI sequence 00
and better performance than LOAM for KITTI sequence 05 by generating a trajectory
map closer to the ground truth value in places where loop closure takes place. Figure 8
shows the results of our algorithm running on KITTI odometry dataset sequence 07. As
depicted, our estimated trajectory is closer to the ground truth value than the popular
SLAM module, ORB SLAM, a versatile and accurate monocular SLAM system where
the loop closure happens [14].

We also ran our algorithm in a real-world indoor environment, the 6th floor of our
academic building, by adapting the state-of-the-art 2D mapping algorithm, Cartographer
[10], to our pipeline. Figure 9 shows the generated 2D occupancy grid map (bottom), and
for comparison, the ground truth floor plan (top). As can be seen, the results are

reasonable.
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Qur result
Ground Truth

Figure 8 Experimental Results on KITTI Sequence 07

Figure 9 Top: Flor Plan, Bottom: Mapping Result
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4 CONCLUSIONS

In this study, we looked at existing Bluetooth and Wi-Fi data for the potential use for
creating models for emergency response. However, data analysis from a case study
conducted at Port Authority showed that this data is insufficient for use for dynamic
environments, i.e. in case of an emergency. A queuing network model of the system was
proposed. However, the preliminary analysis showed that a more consistent data
collection effort is needed in order to be able to build reliable models even for recurring,
day-to-day operations. This study then looked at state-of the art technology that can be
used in for mapping of environments in emergency conditions. For this purpose, a new,
integrated, and modular sensor fusion architecture has been developed and fully tested
against a publicly available data set. Experiments have validated the hypothesis that by
leveraging the redundancy across heterogeneous sensors, multi-sensor data fusion
improves accuracy and robustness for applications such as mapping and motion
estimation. In addition, the modular pipeline provides robotics researchers the freedom to
adapt and experiment with related algorithms. There are many directions in which this
work can be expanded. For the multi-sensor data fusion model, pre-built models for
sensors of different modalities can be developed. For example, a model can be built for
the inertial measurement unit (IMU), which is often used in modern SLAM algorithms to
improve the accuracy and robustness of mapping [18]. While we primarily focused on the
perception system of the autonomous driving platform, the control and planning modules
of the platform can be further developed to provide more research possibilities for the

future users of our platform.

27



Spectral-Based Controllability Pedestrian Evacuation Network Synthesis using
Multilayered Estimation Models in Real-time

DISCLAIMER
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necessarily reflect the official views or policies of the UTRC. This report does not
constitute a standard, specification or regulation. This document is disseminated under
the sponsorship of the US Department of Transportation, University Transportation
Centers Program, in the interest of information exchange. The U.S. Government assumes

no liability for the contents or use thereof.
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