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EXECUTIVE SUMMARY 
Autonomous vehicles are expected to revolutionize the future transportation system by 
automating driving tasks, thereby eliminating driver-related, accident-causing factors, 
such as inattention, fatigue and driving under the influence of drugs or alcohol. 
Autonomous vehicles rely on various sensors, actuators, and communication platforms 
to sense the roadway infrastructure and other road users. The continuous evolution in 
computing, sensing, and communication technologies can improve the performance of 
autonomous vehicles. Although the automotive companies are racing to be the first to 
sell autonomous vehicles to the public, a new combination of sophisticated computing 
and communication technologies will present new challenges, such as interaction of 
autonomous vehicles with non-autonomous vehicles. It is essential to address these 
potential safety risks before mass implementation of autonomous vehicles. A 
comprehensive risk analysis of autonomous vehicles in mixed traffic streams, designed 
to explore the root causes of potential failure, could lead to safe and reliable 
autonomous vehicles. The objective of this study was to identify the risks associated 
with the failure of autonomous vehicles in mixed traffic streams and develop strategies 
to minimize these risks.  

Three distinct and interconnected phases were used to conduct the risk analysis; i) risk 
identification, ii) risk estimation and iii) evaluation.  To identify the risks, the autonomous 
vehicle system was first disintegrated into vehicular components (i.e., sensors, 
actuators and communication platforms). Because an autonomous vehicle will share the 
roadways with human drivers for many years after their deployment, transportation 
infrastructure components play an important role in the final risk analysis. 

A fault tree model was developed for each vehicular component failure and each 
transportation infrastructure component failure. The failure probabilities of each 
component were estimated by reviewing relevant literature and publicly available data. 
The fault tree analysis revealed the autonomous vehicle failure probability to be about 
14% resulting from a sequential failure of vehicular components (i.e., particularly those 
responsible for automation) in the vehicle’s lifetime. Subsequently, the failure probability 
due to autonomous vehicle components and due to transportation infrastructure 
components were combined. An overall failure probability of 158 incidents per 1 million 
miles of travel was determined possible as a result of malfunctions or disruptions in 
vehicular or infrastructure components, respectively. To validate the results, real-world 
data from the California Department of Motor Vehicles autonomous vehicle testing 
records were utilized in this study.  

The most critical combinations of events that could lead to failure of autonomous 
vehicles, known as minimal cut-sets, were also identified and ranked based on their 
corresponding failure probabilities. Based on the fault tree analysis, 22 strategies were 
identified that would minimize the failure probability of autonomous vehicles. Finally, 
these identified strategies were evaluated using benefits-costs analysis. 
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1. INTRODUCTION
Transportation systems and services have constantly evolved throughout history. 

Individuals used horses as the primary mode of transportation for many years (1). The 

first steam engine automobile was demonstrated in 1801 in England. These first- 

generation automobiles had the same speed as horses (1). With the invention of the 

combustion engine, automobiles became more efficient to travel from one place to 

another with faster speeds (1). However, automobiles were not as safe as riding horses 

because horses can be tamed, while automobiles would have mechanical issues as 

well as crashes due to human errors. The National Highway Traffic Safety 

Administration (NHTSA) reported 90 deaths per day in 2013 due to traffic crashes on 

U.S. highways, with distracted driving responsible for nine deaths out of the 90 (2). 

Identifying causes due to these crashes and finding their solutions are challenging as 

human behavioral factors are responsible for 94% of all road crashes in the U.S. (3). 

Furthermore, researchers have found that skilled drivers with advanced driver training 

and education, are prone to take high risks which can lead to significantly higher 

number of crashes than those attributed to most drivers (4). Thus, by eliminating the 

human driver, an autonomous vehicle can significantly reduce the probability of crashes 

and fatalities on U.S. highways. Fagnant and Kockelman  (5) predicted that autonomous 

vehicles could eliminate more than 4 million crashes and save more than 21,000 lives 

per year with a 90% market penetration. 

An increased use of automobiles in the 21st century is causing congested roadways. 

The American Society of Civil Engineers’ (ASCE) report card for the year 2014 stated a 

loss of $160 billion in time and fuel consumption due to traffic congestion, which is 

higher than the combined total of the annual gross domestic product (GDP) of 130 

countries (6; 7). In addition to the loss of revenue and resources, congested conditions 

on any roadway have a tendency to increase risky driving behaviors (8). One of the 

solutions to reduce congestion and increase safety is the introduction of autonomous 

vehicles to existing vehicle fleets. Automotive companies and academic researchers 

have been developing and testing autonomous vehicle technologies to improve the 

safety and efficiency of surface transportation systems.  

Autonomous vehicles have the potential to become a safe, sustainable, and personal 

mode of transportation. However, these vehicles are equipped with highly tuned 

sensors and actuators, which are responsible for their autonomous navigation. Despite 

the many benefits of autonomous vehicles, these advanced components create a new 

set of challenges. Hence, it is necessary to evaluate these technologies before 

implementation. Furthermore, it is also necessary to identify strategies to integrate 

autonomous vehicles into current streams of traffic. According to disengagement reports 

submitted to the California Department of Motor Vehicles (CA DMV) by various original 
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equipment manufacturers (OEMs) who are testing autonomous vehicles, other non-

autonomous vehicles driven by human drivers were the primary cause for a significant 

number of incidents (9-13). Table 1 presents a summary of crashes from recent reports. 

These reports also include disengagement incidents in which the operator disengages 

autonomous driving and controls the vehicle manually. About 2,700 disengagements 

were reported because of unexpected autonomous driving situations such as potholes, 

poor lane markings, construction zones, and adverse road weather conditions (14-16). 

In addition, various hardware and software systems responsible for autonomous driving 

are also prone to disruptions and/or hacking. Researchers recently developed a system 

consisting of low-power lasers and a pulse generator that can mislead autonomous 

vehicle sensors such as LIDAR into seeing objects where none exist (17). Researchers 

also demonstrated that hackers could remotely take over the control of autonomous 

vehicle brakes, accelerators, and other critical safety components (18).  Considering 

potential risks during the transition phase (i.e., from conventional vehicles to 100% 

autonomous vehicles in the transportation system) as well as the vulnerability of other 

vehicular and communication technologies, it is essential to evaluate the failure risks of 

autonomous vehicles. This study focuses on the transition phase in which autonomous 

vehicles will become a part of the current traffic mix of conventional vehicles. 

Table 1: California DMV Autonomous Vehicle Crash Report  

Automobile 
Company 

 
Year 

Autonomous Vehicle 
Information 

 
Other Party Information 

GM Cruise LLC May 2017 Moving Bicyclist rear ended the autonomous vehicle 

 
Google Auto LLC 

March 
2017 

 
Moving  

Human driver rear-ended while creeping 
forward with traffic at red light 

 
GM Cruise LLC 

March 
2017 

 
Stopped in traffic 

Human driver clipped the front of 
autonomous vehicle while turning 

 
GM Cruise LLC 

March 
2017 

 
Moving 

Human driver rear-ended after traffic light 
turned green 

 
Google Auto LLC 

December 
2016 

 
Moving 

Human driver collided into autonomous 
vehicle side doors while making left turn  

 
Google Auto LLC 

October 
2016 

 
Moving 

 
Human driver rear-ended at a yield sign 

 
Google Auto LLC 

September 
2016 

 
Moving 

Human driver violated red light and collided 
with right side of autonomous vehicle 

 
 
Google Auto LLC 

 
September 
2016 

 
 
Stopped in traffic 

Human driver rear-ended autonomous 
vehicle while it was yielding to oncoming 
vehicles 

 

The remainder of this report is organized as follows: In the next section, a review on 
autonomous vehicle architecture is summarized along with the diverse autonomous 
vehicle risk analysis methods used by other researchers. In Section 3, the proposed 
research methodology is presented. Risk identification is included in Section 4 and 
development of fault trees and risk estimation results are discussed in Section 5. The 
fault tree models are evaluated with real-world data and presented in Section 6. Section 
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7 presents risk minimization strategies and a benefits-costs analysis. Finally, 
conclusions along with the limitations of this study are provided in Section 8.   

1.1 Objectives 
The primary objective of this research is to perform a detailed risk analysis of 
autonomous-connected vehicles in a mixed traffic stream. The overall scopes of this 
detailed risk analysis:    

1) to determine the hierarchical sequences of events that may result in the failure of 
an autonomous vehicle due to either vehicular component failures or 
infrastructure component failures, 

2) to develop the strategies to minimize risks related to autonomous vehicles , and 

3) to perform a benefit-cost analysis to determine the most economical measures to 
minimize risks of autonomous vehicles. 
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2. LITERATURE REVIEW 

2.1 System Disassembly 
To identify the potential risks related to a system, the first step is to divide the whole 
system into basic components. A detailed behavior analysis for each basic component 
was performed to establish the relationships between the components and overall 
system performance in this research. An analysis of the more sensitive components  
was especially helpful in developing a detailed risk assessment. However, to prepare for 
the behavior analysis, the research team had to first conduct a thorough literature 
search to identify and establish the relationships between failures of the autonomous 
vehicles and causal factors. This information was utilized to develop the fault trees on 
autonomous vehicle failure.  

The exponential growth of processor speeds and availability of affordable and efficient 
sensors assisted the development of the machine vision-based autonomous navigation 
system. Researchers have explored several technologies such as LIDAR (light 
detection and ranging), radar, camera vision, and acoustics to develop viable and 
economic solution for autonomous driving (19-21). Among them, LIDAR is the most 
widely used sensor. This sensor collects kinematical and physical information about the 
surroundings (22). Radar transmits radio waves into the environment to scatter back 
information on obstacles around the vehicle to be aware of other vehicles ahead and 
behind including fixed objects. This sensor keeps a digital eye on the other cars and 
instructs the system to speed up or slow down depending on the behavior of other 
drivers. It also assists the automotive parking feature. To improve self-driving 
performance and the reliability of autonomous cars, researchers have also utilized high 
performance computing, fast processing, and high capacity data storage to develop a 
nearly 360-degree awareness of the surroundings by real-time analysis of collected 
data from multiple sensors. Furthermore, researchers have integrated the machine-
based vision system with GPS, and internal measuring units for better position 
estimation (23-25).  

The current advanced driver assistance systems such as adaptive cruise control (ACC), 
collision warning, automatic braking, a lane departure warning system, and a pedestrian 
detection system have already been adopted by OEMs and are available in the current 
vehicle fleet. These features help reduce errors due to drivers and improve safety 
performance of the conventional vehicle. These features will also be available in an 
autonomous vehicle as an individual sub-system or an integrated component of an 
autonomous driving system to improve the safety and performance of autonomous 
vehicles. Table 2 presents a summary of these features with their benefits on overall 
transportation systems.  
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Table 2: Summary of accident causes and solutions through automotive features 

Accident causes 
Potential 
Solution 

Sensors Applied Algorithms Benefits/Improvements 

Rear-end collision, monotony driving, 
driving on long trips 

Intelligent 
adaptive cruise 
control system 

- Radar 
- LIDAR 

Fuzzy logic or neuro-
controllers (26-28) 

- Reduced rear-end collisions 
- Reduced fuel consumption 
(1.1 to 10.7% achievable)  
- Maximum use of highway 
capacity  

Drivers’ delay in recognizing/judging the 
“dangerous” situation  

Automotive 
collision warning/ 
avoidance 
system 

- Camera 
vision  

Neural network (29) 

- Reduced crashes  
- Handle critical situation safely 
and precisely 
- Automatic braking  

Temporary and involuntary fade of a 
driver’s vision by falling asleep, fatigue, 
using a mobile phone, and chatting, which 
causes the vehicles to leave their 
designated lane  

Lane departure 
warning 

- Camera 
vision  
- Global 
positioning 
system  

Particle filtering (30), Edge 
distribution function (31) 

-Reduced crashes 
-Prevention of unintentional 
deviation of vehicles from the 
center of road 
- Diagnose road edges even in 
extreme lighting conditions   

Drivers’ misjudging the traffic signs and 
signals, or disobey them while 
approaching to the intersection 

Intersection 
collision 
avoidance 
system 

- Camera 
vision  
- Loop 
detector  
- Radar 

Neural network (32) 
- Reduced intersection collisions 
- Safe intersection movements  

Lack of speed control while driving, 
inappropriate steering wheel angle, unsafe 
driving under unfavorable conditions   

Electronic 
stability control 

- Wheel 
encoder 
- LIDAR 
- Radar 

Fuzzy logic PID controller 
(33) 

- Reduced crashes  
- Improved lateral stability of 
vehicles in extreme conditions  

Unsafe pedestrian road crossings, 
inattentive driving, delay in response  

Pedestrian 
detection system 

- Camera 
vision  
- Infrared 
sensors 

Shape analysis (34), 
Probabilistic human template 
(35), Gabor filters and support 
vector mechanics (36), Neural 
networks (37) 

-Detect pedestrian movement  
- Guide the vehicles to a safe 
route based on pedestrian 
movements 
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2.2 Risk Analysis of Autonomous Vehicles 
Risk analysis of autonomous vehicles identifies undesirable events and sequences of 
events leading to autonomous navigation failure, which could lead to road crashes, 
passenger fatalities, pedestrian injuries, vehicle damage, and property damage. Risk 
analysis methods can be categorized into three different classes: i) situation-based 
analysis, ii) ontology-based analysis, and iii) fault tree analysis.   

Researchers have used situation-based risk analysis to predict the probability of 
collisions between approaching vehicles in mixed (autonomous and non-autonomous 
vehicles combined) traffic streams, where risks or threats are identified based on the 
knowledge of similar previous events (38-42). The ontology based approach includes a 
hierarchical semantic network of basic entities and basic events generated from their 
interrelationships (43; 44).  

The fault tree based approach focuses on determining potential causes of failure of the 
system that may result in a safety hazard or economic loss. The fault tree analysis 
method encourages analysis to contemplate how a particular component could impact 
the overall performance of the system and seeks to identify the causes of undesired 
events (45). However, to understand the cause-effect process, a thorough review of the 
overall system is required (46). After the Challenger incident in 1986, the National 
Aeronautics and Space Administration (NASA) emphasized performing quantitative risk 
or reliability analysis using the fault tree method for its space missions’ safety 
assessments (47). Researchers have utilized this method to assess the safety and 
reliability of construction, design and implementation for high-risk industries including 
aircraft manufacturers, (48), nuclear power plants, (49), and industrial plants. Moreover, 
the fault tree analysis is used to assess the potential for many other fields, such as the 
petrochemical industries (50; 51), bridge failure analysis (52), construction management 
(53), toxic goods transport (54), hazardous site management (55), and medicine 
industries (56). 

Fault tree analysis has been used in risk assessments of autonomous vehicle features 
(i.e., features that are solely responsible for converting a traditional vehicle into an 
autonomous vehicle). Swarup and Rao disassembled the adaptive cruise control (ACC) 
system of an autonomous vehicle and investigated the causes of failures using the fault 
tree analysis method (57). In another study, Duran and Zalewski investigated the 
causes and effects of failures related to LIDAR and dual camera-based computer vision 
systems (58). The overall summary of different approaches conducted so far is 
summarized in Table 3. 

 



7 
 

Table 3: Summary of risk analysis techniques utilized for autonomous vehicles since 2006 

Analysis 
Types 

 
Authors 

 
Parameters Considered 

 
Algorithms 

 
Limitations 

 
 
 
 
 
 

Situation 
Based 

 
Hillenbrand et al., 
2006 (38) 

 
Rear-end collision and crossing 
collision at intersection 

 
 
Monte Carlo  

- Only applicable for simple intersections 
- Risks from vehicular components were not 
considered 

 
Laugier et al., 2011 
(39) 

 
Collision risk assessment based 
on multiple sensors data 

Hidden Markov 
Model and Gaussian 
Process 

- High prices of multiple on-board sensors 
- High computation power required for parallel 
processing 

 
Martin, 2013 (59) 

Interaction with other drivers on 
multilane highways 

 
Game theory  

- Only valid when each driver knows all possible 
trajectories and destinations of other drivers 

 
Platho et al., 2012 
(60) 

 
Road users and surrounding 
entities affecting users 

 
 
Bayesian network 

- Entities were separated from each other  
- Could fail in complex situations with multiple 
entities 

 
 
Furda and Vlacic, 
2011 (61) 

Attributes based on priori 
information, sensor 
measurements and V2X 
communication  

 
 
Multi-criteria decision 
making (MCDM) 

 
- Limited driving maneuvers were considered 
- High computational power required for real-time 
decision making 

 
 
 
 
 
 
Ontology 
Based  

 
 
Armand et al., 2014 
(43) 

Different relationships between 
design vehicle and various road 
entities (pedestrians, other 
vehicles, infrastructures, etc.) 

 
 
 
Ontology framework 

 
- Limited real-time applications 
- Depends on the frequency of GPS receiver 
- Not compatible for every driving scenario.  

 
 
 
Hulsen et al., 2011 
(62) 

 
 
 
Roads, lanes, traffic signs, traffic 
lights, and other road users 

 
 
 
 
Ontology framework 

- Fixed road geometry was considered without 
incorporating uncertainties 
- Qualitative analysis  
- Was not evaluated in real-world, only tested in 
simulation 

 
Pollard et al., 2013 
(63) 

Vehicle perception, visibility 
condition, weather, traffic signs 
and road types. 

 
 
Ontology framework 

 
- Separate model based on level of automation 
- High computational power required 

 
 
Kaloskampis et al., 
2015 (44) 

 
Estimation of risks related to 
pedestrian behavior using camera 
feeds  

 
Ontology framework, 
Gaussian mixture 
model 

- Other road users, weather conditions and road 
surfaces were not considered in study  
- Data from video feeds will require high 
computational power 

 
Fault 
Tree 
Based 

Swarup and Rao, 
2015 (57) 

Identification of potential threats 
of adaptive cruise control 

 
Fault tree 

- Qualitative analysis  
- Impacts of each cause were not ranked   

 
Duran and Zalewski, 
2013 (58) 

 
Risks associated to LIDAR and 
camera vision were investigated  

Fault tree and 
Bayesian belief 
networks 

 
- Other vehicular components were not included 
- Limited to vehicular components   
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3. METHOD  
The research team adopted three distinct and interconnected phases as identified by 
White (64) to conduct risk analyses of autonomous vehicles in this research. They were:  

i) risk identification,  
ii) risk estimation, and  
iii) evaluation of the fault-tree model.  

The first crucial step in performing a risk analysis is risk identification of autonomous 
vehicle failure, which consists of compilation of different types of autonomous vehicle 
failure information including: i) the nature and extent of the failure sources, ii) the chain 
of events, iii) pathways and processes that connect the cause to the effect, and iv) the 
relationship between risk sources and impacts (65). Risk estimation can be performed 
by various analysis methods. In this study, the research team utilized the fault-tree 
analysis method. Then, the results of fault tree analysis were validated by comparing 
them with real-world data. Figure 1 illustrates the research approach adopted for 
conducting this risk analysis in this study. Based on the results of the analysis, risk 
minimization strategies were identified to minimize the risks related to autonomous 
vehicles. Finally, these risk minimization strategies were evaluated with benefits-costs 
analysis.  

The autonomous vehicle in this study is defined as a fully autonomous passenger car or 
a similar vehicle (which closely represents Level 4 automation as defined by the 

National Highway Transportation Safety Association (NHTSA)1 or Level 5 automation as 
defined by Society of Automotive Engineers (SAE)2) (66; 67) and does not include 

transit or other type of on- or off-the-road vehicles. 

 

Figure 1: Research Methodology for autonomous vehicle risk analysis 

 

1. NHTSA: In Level 4 automation, the vehicle can navigate, perform all driving control functions and monitor 
the roadway for an entire trip without any intervention of human driver. 

2. SAE: In Level 5 automation, automated driving system can perform all aspects of dynamic driving task under 
all roadway and environmental conditions.   
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4. RISK IDENTIFICATION  
Risk identification included disassembling the autonomous vehicle system into 
individual components, and analyzing the behavior of these components to determine 
the failure rate for each component. This task was divided into two sub-tasks: 

1. Probability estimation through a literature search  
2. Interview of experts to revise literature review conclusion 

4.1 Probability Estimation through Literature search  
This study’s researchers conducted a literature review of published reports, peer-
reviewed conference and journal papers, and other published materials to develop 
hierarchical and logical relationships between the top-level event (i.e., failure of an 
autonomous vehicle) and different autonomous vehicle components. It is expected that 
the transition from conventional vehicles (i.e., non-autonomous) to an autonomous 
vehicles will likely go through a gradual change over a long period (i.e., 5-10 years) in a 
regional surface transportation system (68). This suggests that autonomous vehicles 
will share the roadway with conventional vehicles such as cars, transit buses, trucks, as 
well as bicycle riders, motorcyclists, and pedestrians.  

The risk identification process was divided into two sub-categories to estimate failure 
risks of autonomous vehicles due to different vehicular components and transportation 
infrastructure components. The first category focused on identifying system failures 
from autonomous vehicular components. The second category focused on identifying 
threats from infrastructure components, including threats from other non-autonomous 
vehicles.  

4.1.1 Autonomous Vehicle Components 
All vehicular components were divided into four major subsystems: hardware, software, 
communication, and human-machine interface. The sensors utilized to sense the 
roadways, such as LIDAR, GPS, wheel encoders, and the integration platform were 
included in the hardware subsystem, whereas the software subsystem consisted of data 
collection and processing software required for sensors and autonomous navigation. 
Vehicle-to-vehicle (V2V) or vehicle to infrastructure (V2X) communication platforms 
were included in the communication subsystem, and a human machine interface 
subsystem included a personal assistant system that filters the human voice for 
commands to control various autonomous driving functions. In this study, specific 
technologies that convert a conventional human operated vehicle into an autonomous 
vehicle, were considered. For example, LIDAR, the primary technology being used for 
autonomous navigation, can fail for several reasons, including laser malfunction and 
electrical failures (58). Camera vision is another important component on an 
autonomous vehicle, capable of providing physical information about surroundings (e.g., 
obstacles, road signs, and pedestrians). This system could fail due to misalignment, 
missing filter, dirty or damaged lens, and even improper lighting. The failure probability 
for each component along with reasons of failure are summarized in Table 4 based on a 
literature review. Failures of the vehicle’s mechanical system were not in the scope of 
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this study as it is not a part of the system that converts a conventional vehicle into an 
autonomous vehicle.  

Table 4: Failure probabilities of autonomous vehicular components 

 
 
Basic Events 

 
 
Description  

 
 
Methods 

 
 
Experiment Type 

Failure 
Probability 
(%) 

 
 
 
 
LIDAR failure 

Laser malfunction, mirror 
motor malfunction, position 
encoder failure, overvoltage, 
short-circuit, optical receiver 
damages. 

 
 
 
Bayesian belief 
network 

 
 
 
 
Simulation 

 
 
 
10.0000% 
(58) 

 
 
Radar failure 

Detection curves drawn with 
respect to signal and noise 
ratios  

 
Chi-square 
distribution 

 
Mathematical 
modeling 

 
20 000% 
(69) 

 
 
 
Camera failure  

Foreign particles, 
shockwave, overvoltage, 
short-circuit, vibration from 
rough terrain, etc. 

 
 
Bayesian belief 
network 

 
 
 
Simulation 

 
 
4.9500% 
(58) 

 
 
 
Software failure 

 
System had to generate 
outputs from array definition 
language (ADL) statements 

Extended 
Markov 
Bayesian 
network 

 
 
Experiment (3000 
runs) 

 
 
1.0000% 
(70) 

 
 
 
Wheel encoder 
failure 

Encoder feedback unable to 
be transferred, which can 
cause loss of 
synchronization of motor 
stator and rotor positions 

 
 
 
 
Kalman filter 

 
 
 
 
Experiment 

 
 
 
4.0000% 
(71) 

 
 
 
 
 
GPS failure 

Real-life tests performed 
with high sensitivity GPS in 
different 
signal environments (static 
and dynamic) for more than 
14 hours  

 
 
 
 
 
Least squares 

 
 
                                                                                                                    
 
Experiment (at 4 
different locations)  

 
 
 
 
0.9250% 
(72) 

 
 
Database 
service failure 

Using a new empirical 
approach, connectivity and 
operability data of a server 
system was collected  

 
Generic 
Quorum-system 
evaluator (GQE) 

 
                                                    
Experiment (for 
191 days) 

 
 
3.8600% 
(73) 

 
 
 
 
 
 
Communication 
failure  

Wi-Fi: Periodic transmission 
of 1000-byte frames 
(average conditional 
probability of success after 
previous success 
considered)  

 
 
 
 
In IEEE 802.11b 
network  

 
 
 
 
Experiment (with 
10 vehicles) 

 
 
 
 
5.1250% 
(74) 

Possible LTE: Network 
unavailability during location 
update in mobility  

 
Application of 
CAP theorem  

 
 
Experiment 

 
5.8800% 
(75) 

 
 
Integrated 
platform failure 

A two-state model with 
failure rates was developed 
to estimate the computer 
system availability  

 
 
Markov chain 
model  

 
 
Mathematical 
modeling  

 
 
2.0000% 
(76) 

 
 
Human 
command error 

Analyzed NASA datasets 
from over 115 months; then 
validated by THERP, 
CREAM, and NARA  

                                 
Human 
Reliability 
Analysis 

 
Experiment (from 
December 1998 to 
June 2008) 

 
 
0.0530% 
(77) 
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Basic Events 

 
 
Description  

 
 
Methods 

 
 
Experiment Type 

Failure 
Probability 
(%) 

 
 
System failed to 
detect human 
command 

System unable to detect 
accurate acoustic command: 
Driver inputs wrong 
command, and system 
unable to detect it. 

 
Artificial neural 
networks 
(ANNs) on clean 
speech  

 
 
Experiments (37 
subjects: 185 
recording) 

 
 
 
1.4000% 
(78) 

4.1.2 Transportation Infrastructure Components 
Failure of the autonomous vehicle due to the surrounding infrastructure including other 
non-autonomous vehicles (i.e., human drivers) and transportation infrastructure 
components play an important role in the risk analysis. According to reports submitted 
by companies conducting the testing of autonomous vehicles, most crashes are due to 
human drivers sharing the road with autonomous vehicles (9–13). The non-autonomous 
vehicle driver errors will be a major issue at a low market penetration level of 
autonomous vehicles in mixed traffic streams. Crash records related to reckless driving, 
distraction, vehicle breakdown and tiredness, and incidents rate due to poor weather 
and road conditions were collected from the Virginia Department of Transportation 
(VDOT) and New York State Department of Transportation (NYSDOT) traffic crash 
reports involving non-autonomous vehicles (51, 52). The market penetration rate of 10% 
autonomous vehicles was assumed to calculate the failure probability of an autonomous 
vehicle traveling in a mixed traffic stream. To consider the worst-case scenario, it is 
assumed that 10% of total crashes on a roadway will affect the autonomous vehicle 
navigation in mixed traffic stream.  

Data collected from DOTs were converted into crash rate per mile of autonomous 
vehicle travel to utilize as input (i.e., basic event failure probability) in the fault tree. A 
sample calculation box is provided in appendix A to present the failure probability 
calculation for an autonomous vehicle (AV), when it is involved in a crash due to 
reckless driving, tiredness or distraction from a non-autonomous vehicle (non-AV) 
driver.  

Traffic crashes happened due to bad/poor road conditions were considered in the 
transportation infrastructure failures. Bicyclists and pedestrians involved in crashes 
were also analyzed. A study in Hawaii found that 83.5% crashes between motor 
vehicles and cyclists were caused by motorists and the other 16.5% crashes were 
caused by cyclists (53). Moreover, weather is a huge deterrent to autonomous vehicles, 
especially since not many of these autonomous vehicles have been tested in weather 
conditions other than clear, sunny days. In addition, crashes in construction work zones 
were considered; particularly rear-end crashes in work zones (54). Failure probabilities 
of these infrastructure components, as reported in the literature, were used in this paper 
and are presented in Table 5. 
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Table 5: Failure pobabilities of basic transportation system infrastructure components 

 
 
Basic Events 

 
 
Description 

 
Number of 
Crashes 

Failure 
Probability 
(% per Mile) 

 
 
References 

Non-autonomous 
vehicles crashes  

Crashes due to reckless driving, 
tiredness, hardware and 
distractions considered  

133,901 (per 
100 million 
miles) 

 
0.0134% 

 
(79; 80) 

 
 
 
Cyclists  

Daily nine million bike trips made, 
and among them crashes where 
cyclists were responsible are 
included here.   

 
 
 
3,090  

 
 
 
4.0897×10-6 % 

 
 
 
(81-83) 

 
 
Pedestrians  

Crashes happened where 
pedestrians at fault among the 
annually 42 billion walking trips  

 
 
8,625  

 
 
2.9337×10-6 % 

 
 
(81; 82; 84; 
85) 

Construction 
zones  

Among all work zones 41.33% 
percent were rear-end crashes  

 
 36,208  

 
7.6264×10-6 % 

 
(86; 87) 

 
Weather related 
incidents  

Adverse weather conditions like 
fog, mist, rain, severe crosswind, 
sleet, snow, dust/ smoke 

22,375 (per 
100 million 
miles) 

 
0.0022% 

 
 
(80) 

 
Road conditions 

Crashes related to improper lane 
marking and pavements 
conditions  

 
656 (per 100 
million miles) 

 
 
6.5600×10-5 % 

 
 
(79) 

 

4.2 Interview Experts to Revise Literature Review Conclusion 
The research team aimed to conduct an online survey to seek information related to 
autonomous vehicle failures from the subject matter experts (SMEs). The 
questionnaires, invitation email, and consent forms were submitted to the Rowan 
University Institutional Review Board for approval (Please see Appendix A for approval-
letter and approved survey tools). After getting approval, the team collected publicly 
available contact information of experts in this field. The responses of the survey have 
been stored anonymously and any personally identifiable information will not be 
published in any reports and publications.  

4.2.1 Online Survey Structure  
The research team used the Delphi Survey method to collect the experts’ opinion from 
this survey regarding the failure risk of autonomous vehicle systems. The Delphi Survey 
is a unique method to facilitate discussion among the experts through multiple 
questionnaires. It normally consists of more than one round where after each round the 
participants will review anonymous summary of previous round with their judgments. 
The experts will be allowed to revise their responses based on the replies of other 
members in their survey panel. Finally, this process will end when the desired 
consensus is achieved.  

The role of the research team was to lead the interaction among the experts as the 
steering committee. The experts were grouped into three panels based on their areas of 
expertise. The three panels were 1) academic researchers’ panel, 2) autonomous 
vehicle industry researchers, and 3) experts’ panel to include researchers from 
automated navigation sensor companies. These groups probably would have different 
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perspectives, so without separating the experts into different panels, it would be 
impossible to obtain a reasonable degree of consensus. The structural methodology of 
this survey is shown in Figure 2.  

 

Figure 2: Autonomous Vehicle Delphi Survey Structure 

4.2.2 Analysis Survey Results 
Many methods can be used to analyze Delphi survey results and calculate the level of 
consensus. For example, the chi square test, McNemar’s change test, the Wilcoxon 
matched-pairs signed-rank test, Spearman’s rank-order correlation coefficient, Kendall’s 
W coefficient of concordance and F tests. In this research, Kendall’s W coefficient of 
concordance was used to measure the level of consensus between two consecutive 
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rounds of Delphi surveys (88). Table 6 shows the interpretation of Kendall’s W adopted 
in this study.  

Table 6: Interpretation of Kendall’s W 

Kendall’s W Interpretation 

W ≤ 0.3 Weak agreement 

0.3 < W ≤ 0.5 Moderate agreement 

0.5 < W ≤ 0.7 Good agreement 

W > 0.7 Strong agreement 

 

The research team invited a total of 140 people to respond to the first round of surveys. 
It is important to mention that due to limited responses from invited participants it was 
not possible to release any further rounds of survey. However, only seven experts 
responded back in this round, where about 40% of the responders were university 
researchers, 30% were researchers in industry  and another 30% were a manager of a 
development team. Among these survey participants, about  40% had experience of 
“more than 9 years” working in the autonomous vehicle research field, and another 25% 
had “5–9 years” working experience.  

The participants were asked to identify the primary sensor failure which could lead to 
overall autonomous vehicle failure. Among them about 85% of the participants agreed 
that LIDAR and camera vision could impact the success rate of autonomous vehicle 
navigation, while 55% believed GPS systems could be vulnerable to failure. The 
participants varied widely in their selection of failure probabilities for different vehicular 
components and transportation infrastructure components. For instance, 60% of the 
participants agreed that the failure probability of LIDAR could be between 3.01 and 
6.00%. For camera vision, responses from 20% based their failure probability ratios on 
three options:1.01 to 3.00%, 3.01 to 6.00%, and 6.01 to 10.00%. The remaining 40% 
selected “greater than 10.00%.” Moreover, 50% of responders selected the failure 
probability of the wheel encoder to be between 1.01 and 3.00%, where earlier the 
research team found that the failure probability of the same wheel encoder was 4.00% 
from their literature review. Even though around 60% thought communication system 
failure could fail the overall autonomous vehicle system, none held DSRC failure 
responsible. LTE communication failure was selected instead.  

Participants also agreed that autonomous vehicles could be vulnerable to software and 
human-machine interaction system failures. Among the infrastructure components, the 
weather, human drivers, cyclists and pedestrians were considered as the reasons for 
autonomous vehicles failure by the maximum number of participants (about 70%). 
However, the participants provided a wide range of failure probabilities for these 
infrastructure components.  

The research team utilized the Kendall’s W coefficient of concordance to calculate the 
level of consensus and decided to continue the iteration till strong agreement is 



15 
 

achieved (Kendall’s W equals to 0.7 or higher). For instance, 3 out of 5 participants 
selected 3.01 to 6.00% as the failure probability of LIDAR, and others selected greater 
than 10.00%.  

Null Hypothesis: There is no agreement among the participants upon the failure 
probability of LIDAR. 

Alternative Hypothesis: The participants agreed upon the failure probability of LIDAR.  

For this hypothesis, Kendall’s W was 0.8 for the question concerning LIDAR failure 
probability. This suggests “strong agreement” among the participants. Also, the one-
tailed p-value was 0.00302, which indicates no agreement among the participants to 
reject the null hypothesis. Detailed calculation is provided in Appendix C.  

Similarly, Kendall’s W was calculated for the failure probability of camera vision. The 
value of W was equal to 0.2 which represents “weak agreement” among the 
participants. With a one-tailed p-value of 0.41, it is very likely that no agreement was 
reached among the experts.  

4.2.3 Updated Failure Probabilities  
The next steps include (1) updating failure probabilities of fault trees developed for this 
study and (2) obtaining answers of the same questions by informing participants about 
the updated results of the fault tree. However, due to the very small participant pool, it is 
not feasible to update the results. The research team decided to identify more 
participants and continue the survey process, and finally publish those results in reputed 
journals in future.  
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5. RISK ESTIMATION 
The fault-tree analysis method was utilized to perform risk estimation in this study 
because of its capability to provide the shortest path to reach the top-level failure from a 
single component (i.e., basic event) failure. Based on the outcomes of the risk 
identification phase, fault-tree models were developed. The research team developed 
two fault trees models: (i) fault tree model for autonomous vehicle failure due to 
vehicular component failures and (ii) fault tree model for autonomous vehicle failure due 
to transportation infrastructure plus human failure while using the infrastructure. These 
models were combined afterward to estimate the overall risk of failure, i.e. failure of an 
autonomous vehicle in mixed traffic stream. 

5.1 Fault Tree for Autonomous Vehicular Component Failures 
The fault tree is developed by disintegrating an overall system into a subsystem, which 
can be further broken down into lower level components/events. This process continues 
until no further disintegration or division can take place. These terminating events are 
called “basic events.” The failure of the overall system is referred to as a “top-level 
event” and the events that link the top-level event with its basic events are called 
“intermediate/casual events.” The top-level event and basic events are interconnected 
based on the hierarchical and logical relationships between events that lead to failure of 
a top event. In a graphical representation of fault tree, these logical relationships are 
presented as “Gate.” The “AND” and “OR” gates are widely used to illustrate the 
relationship between input and output events. Risk estimation quantifies the failure rate 
of the top-level event, and is represented as a percentage in decimal format. This 
estimation takes all basic events into account and determines the failure rate based on 
Boolean algebra. The algebraic equations that are performed are determined by the 
gates used and the statistical model that was used when inputting the basic events. 

The first fault-tree model focused on the failure of an autonomous vehicle due to 
vehicular components. The Isograph FaultTree+ software, which allows various 
statistical models to model basic event failure probability distribution, was used for the 
fault tree analysis (34). For this study, a “fixed probability” statistical model was used to 
perform the risk analysis (34). After allocating basic event failure probabilities and 
solving the fault tree, a failure rate of 14.22% was determined for the failure of an 
autonomous vehicle due to its components’ failure, which means that autonomous 
vehicle operations could fail 14.22 times over its lifetime due to component failure. It is 
important to note that the fault tree model included only components that are 
responsible for autonomous driving such as the LIDAR sensor. Components such as 
the internal combustion engine was not considered in this study. Figure 3 illustrates the 
fault tree with failure probabilities including only autonomous vehicle components.  

5.2 Fault Tree for Transportation Infrastructure Component Failures  
Following the same steps applied in the first fault tree, the second fault tree was 
constructed for transportation infrastructure components. For this study, components 
affecting infrastructure included other drivers of conventional vehicles sharing the 
roadway with autonomous vehicles. The top-level event for the second fault-tree model 
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was “failure of autonomous vehicle due to infrastructure components.” This model 
included failure of the autonomous vehicle due to other road users, weather, 
construction zones or road conditions. The infrastructure-focused fault tree is illustrated 
in Figure 4. It represents a failure probability 0.01571% for the autonomous vehicle 
based on other road users and infrastructure.  

5.3 Combined Fault Tree 
The National Aeronautics and Space Administration (NASA) estimates the failure 
probabilities of basic events by applying different methods, such as experimental 
estimation and simulation modeling (89). Opinions of subject matter experts are also 
considered in probability estimations (90). The risk analysis of NASA’s missions often 
involves the integration of various risk models, which includes failure probabilities 
calculated by applying various methods (89; 90). Similarly, to estimate the failure 
probability of an autonomous vehicle traveling in a mixed traffic stream, the research 
team combined the failure probabilities of autonomous vehicular components and 
transportation infrastructure components estimated through their respective fault-tree 
models (illustrated in Figure 5) as described below. 

The failure probabilities of individual vehicular components collected from literature are 
presented in Section 4.1.1; however, when these components become 
parts/subsystems of an autonomous vehicle, the car manufacturer will ensure that they 
remain operational throughout the life of the vehicle with periodic health monitoring and 
maintenance. A typical life time of a conventional vehicle is about 150,000 miles (91). 
Based on this information, it was assumed that the life of an autonomous vehicle is also 
150,000 miles, and this assumption was used to estimate an autonomous vehicle failure 
probability per mile. Given that the overall probability of an autonomous vehicle failure in 
its lifetime due to vehicular components is 14.22%, the failure probability per mile can 
be estimated as 0.0000948% (i.e., 14.22%/150,000). However, the failure probability of 
this vehicle due to transportation infrastructure components is calculated 0.01571% per 
mile, as mentioned in the previous section. Furthermore, for the combined fault tree, the 
failure due to vehicular components and failure due to infrastructure components were 
assumed to be independent of each other, and can be combined with an ‘OR’ gate to 
estimate the failure probability of an overall autonomous vehicle system. The following 
equation was used to calculate the failure probability for the top-level event (i.e., failure 
of autonomous vehicle) of the combined fault tree. The ‘+’ sign in the equation 
represents the ‘OR’ gate. As shown in the following equation, an autonomous vehicle 
operation could fail 158 times in 1,000,000 miles of travel due to failure of either 
vehicular components, or infrastructure components, in a mixed traffic stream. The 
combined fault tree is shown in Figure 5.  

P(A) = P(VC) + P(IC) = 0.000000948 + 0.0001571 = 0.000158048 per mile of travel  

where P(A) = overall failure probability of autonomous vehicle system per mile of travel.  

P(VC) = autonomous vehicle failure due to vehicular components per mile of travel. 

P (IC) = autonomous vehicle failure due to infrastructure components per mile of travel. 
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Figure 3: Fault Tree Analysis Considering Failure Due to Vehicular Components 
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Figure 4: Failures Due to Other Road Users and Transportation Infrastructure Components 
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Figure 5: Failure of Autonomous Vehicles in Mixed Traffic Streams Using Fault Tree 
Models 

5.4 Risk Hierarchy 
The primary benefit of a fault tree analysis is its ability to develop the cut sets, which are 
essentially the hierarchical sequence of events. Cut sets can result in the failure of the 
main/top event. Cut sets can also help engineers and decision makers to prioritize 
which component failure risk need to be addressed first to improve the safety 
performance of an autonomous vehicle.  

Ten cut sets were distinguished in the analyzed fault trees considering the failure 
probabilities of both vehicular components and infrastructure components. These cut 
sets were ranked based on their failure probabilities and are presented in Table 7. It 
was determined that the failure of the communication system could be the most 
vulnerable event among all basic events, which has a failure probability of 9.513%. 
Hardware system failure, which is caused by sensitive sensor and actuator failures, was 
the second most common problem with a failure probability of 4.249%.   
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Table 7: Minimal cut sets of autonomous vehicle components 

Fault 
Tree 
Ranks 

 
Cut sets 

 
Boolean Expression 

Failure 
Probability 

1 Communication System (GT4) EV11+EV12 9.5130% 

2  
Hardware System (GT1) 

EV1+ [(EV2+ EV3+ EV4+ EV5+ EV6) 
* (EV7+EV8)] 

4.2490% 

3 Software System (GT2) EV9 1.0000% 

4 Non-autonomous Vehicles 
Crashes (GT11) 

EV17+ EV18+ EV19+ EV20 0.0134% 

5 Weather (GT12) EV21 0.0022% 

6 Vehicle-passenger interaction 
(GT9) 

(EV13*EV14) 7.4200×10-4 % 

7 Road Condition (GT14) EV23+EV24 6.5600×10-5 % 

8 Construction zones (GT13) EV22 7.6264×10-6 % 

9 Cyclists (GT10) EV15 4.0897×10-6 % 

10 Pedestrians (GT10) EV16 2.9337×10-6 % 
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6. EVALUATION OF THE FAULT-TREE MODELS 
Fault tree models can be evaluated qualitatively or quantitatively. It is important to 
validate the analyzed fault tree analysis model with real-world data. The qualitative 
validation method considers the basic events identification and their relationship with 
the top-level event(s). A quantitative method includes comparing the failure probabilities 
estimated through a fault-tree analysis to real-world data (92). The research team 
compared the results obtained from the fault tree models with the real-world data 
available from the California DMV autonomous vehicles testing records (9-13). 
According to CA DMV autonomous vehicle testing regulations, all autonomous vehicle 
manufactures and developers holding a permit to test, have to submit accident reports 
within 10 days of the incidents and an additional disengagement report annually (93). 
The summary of collected crash and disengagement data from the CA DMV is 
presented in Table 8, where each type of system failure was ranked based on the % of 
incidents. 

Table 8: California DMV Autonomous Vehicles Testing Data 

 
System Failure 

 
Description 

No of 
Incidents 

% of 
Incidents 

Real 
World 
Ranks vs 
Fault Tree 
Ranks* 

 
Reference
s 

 
 
Hardware System  

Hardware discrepancy, issue 
with tuning and calibration, and 
unwanted maneuver  

 
 
288 

 
 
17.8439 

 
 
3 (2) 

 
 
(9-11) 

 
Software System  

Software discrepancy and 
unable to detect vehicle or 
obstacles 

 
80 

 
4.9566 

 
5 (3) 

 
(9) 

 
 
Communication 
System  

Planner data not received, drop 
off on received data, 
communication evaluation 
management failure 

 
 
 
642 

 
 
 
39.777 

 
 
 
1 (1) 

 
 
 
(12; 13) 

 
Non-autonomous 
vehicles crashes 

Non-autonomous vehicles 
behaviors at low penetration 
level of autonomous vehicles 

 
 
68 

 
 
4.2131 

 
 
6 (4) 

 
 
(9-11) 

Vehicle-
passenger 
interaction 

Human uncomfortable to 
continue automation  

 
487 

 
30.1735 

 
2 (6) 

 
(12) 

 
 
 
Construction 
zones  

Signs, hands signals, lane 
closures, and sudden reduction 
of speed represent the 
construction zone scenarios 

 
 
 
31 

 
 
 
1.9207 

 
 
 
7 (8) 

 
 
 
(9; 10) 

 
Road conditions 

Lane marking and adverse 
road surface conditions 

 
111 

 
6.4125 

 
4 (7) 

 
(9; 10) 

 
 
Weather  

Rainy, sun glare, twilight, 
cloudy: poor sunlight conditions 
and night time are considered 
here 

 
 
18 

 
 
1.1152 

 
 
8 (5) 

 
 
(9; 10) 

* Values in parenthesis represent the ranks of system failures estimated from fault tree analysis.  
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The comparison of ranks given to each basic event of system failure by the final 
combined fault-tree model versus the real-world data is presented in Figure 6. All basic 
failure events are ranked in the descending order of failure probability in the following 
figure (i.e., the failure probability decreases with the increase in rank). For example, a 
rank of 2nd place for hardware system failure, from fault tree analysis, suggests that 
there is a high probability of failure due to hardware failure compared to failure due to 
construction zones (Rank 8).  

From Figure 6, it could be inferred that the communication system failure is ranked 1 
based on the fault tree risk analysis, which conforms to the real world autonomous 
vehicle test data. A significant difference in the ranking of failure due to ‘Vehicle-
passenger interaction’ between the fault-tree analysis (ranked 6) and the real-world 
(ranked 2) could suggest that the software system and algorithms are going through 
technological advancements, which is captured in the fault-tree analysis but not 
reflected in the earlier real-world tests results. Furthermore, the lower ranking (i.e., 
higher failure probability) using real-world data includes disengagement events reported 
by various car manufacturers in which the primary cause of disengagement from 
autonomous driving is discomfort felt by the driver. The driver may experience 
discomfort and disengage from self-driving to manual driving, if (i) the driver perceives 
actions taken by the autonomous mode are not safe; OR (ii) the driver has interacted 
causing vehicle-passenger interaction to take over control; OR (iii) the autonomous 
vehicle failed to recognize the driver’s command. However, with the improvement in 
algorithms and increased adaptation, this discomfort may reduce, thus reducing the 
failure probability. Lower real-world rankings (i.e., higher failure probability) were 
recorded based on weather events. Fault tree analysis of non-autonomous vehicle 
events compared to the real-world reports suggest that autonomous vehicles have not 
been tested in various weather conditions and at different penetration levels. 

 

Figure 6: Comparison between the results of risk analysis 

and real-world incident percentages 
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7. RISK MINIMIZATION STRATEGIES 
The identified cut sets can be utilized to develop risk minimization strategies to improve 
the safety of autonomous vehicles. This study’s research team performed extensive 
reviews of system dynamics and advanced technologies, identifying 22 strategies to 
minimize the risks associated with autonomous navigation. These strategies are divided 
into two major categories. They are: i) legal measures, and ii) organizational measures. 
Legal measure can be explained as any specific activity that the government can 
enforce to pertain to all autonomous vehicle manufacturers and developers to reduce 
safety risks. An organizational measure is an activity that the government considers 
supportive of development and deployment of autonomous vehicles.   

The 22 strategies are listed below according to their categories for different cut sets 
identified from risk analysis of autonomous vehicles:  

Cut set 1: Failure of Communication System 

1. Legal measure: Regulation implementing the Dedicated Short Range 
Communications (DSRC) devices installation in vehicle units. 

2. Organizational measure: Required infrastructures development. Example: Installation 
of roadside DSRC devices for better communication  

3. Organizational measure: Regulation of priority based (communication prioritization) 
vehicle-server and vehicle-vehicle communication system  

Cut set 2: Hardware System Failure 

1. Legal measure: Provision of installing additional sensors as back up. 

2. Legal measure: Provision of hardware inspections periodically to ensure the safety of 
the system.  

3. Legal measure: Installation of monitoring and warning system to alert the driver in 
case of hardware failure. 

4. Organizational measure: Cloud assisted navigation system for autonomous 
navigation (using sensor information from other vehicles and road-side units) in case of 
hardware failure.  

Cut set 3: Non-autonomous Vehicle Crashes  

1. Organizational measure: Separate lanes for autonomous vehicles to reduce human 
error-related road crashes. 

2. Organizational measure: Autonomous vehicles are allowed to drive on Bus/HOV 
lanes.  

3. Legal measure: Installation of black box in autonomous vehicles for accident 
investigations.  

Cut set 4: Weather 

1. Legal measure: Provision of testing autonomous vehicles in worst weather/different 
lighting scenarios for certain percentage of total testing hours (before deployment).  
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2. Legal measure: Installation of advanced windshield wiper system which can 
automatically detect rain and turn on the wipers accordingly. 

3. Legal measure: Provision of internal heating/cooling system installation for external 
sensors to avoid damage due to extreme temperatures. 

Cut set 5: Software failure  

1. Legal measure: Further research on self-adaptive software for software system 
improvements.  

Cut set 6: Road surface conditions  

1. Legal measure: Provision for responding to unusual or dangerous surface conditions 
(for example: potholes, unmarked lanes, etc.) by installing a detection system using 
additional sensors (radar and camera) focusing on the road surface.  

2. Legal measure: Provision requiring upgrading the navigation system to work without 
lane markings.  

Cut set 7: Construction zones  

1. Organizational measure: Installation of V2I communication devices at all advisory 
signs before construction sites.    

2. Organizational measure: Cloud assisted driving system based on information from 
construction site databases. 

Cut set 8: Pedestrians and cyclists  

1. Legal measure: Provision requiring pedestrians and cyclists tracking devices/ sensors 
(with 360-degree view). 

Cut set 9: Wrong command to system  

1. Legal measure: Provision requiring installing (at least) two methods of command 
input (voice, touch, keys, etc.). 

2. Legal measures: Provision requiring automatic background sounds (e.g., from music, 
fans, etc.) be turned off when voice command is selected. 

3. Legal measures: Installation of camera to monitor driver behavior to avoid misleading 
commands due to impairments. 

7.1 Benefits-Costs Analysis 
The research team conducted a benefit-costs analysis for implementing risk 
minimization strategies for autonomous vehicles. It will result in a comparison of costs of 
the proposed risk minimization strategies through benefit-costs analysis. This analysis 
also helps the policy makers to initiate necessary steps and allocation of funds for 
implementation of solutions.   

One of the risk minimization strategies for hardware system failure is a provision 
requiring installation of additional sensors as back-up and a regulation requiring 
Dedicated Short Range Communications (DSRC) device installation in vehicle units to 
minimize communication failures. The research team focused on these two measures to 
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perform benefits-costs analysis. The detail estimation steps along with assumptions are 
discussed in the following subsection.  

7.1.1 Assumptions in B/C Analysis 
1. Experts predicted that approximately 75% of vehicles will navigate autonomously by 
the year of 2040 (68; 94). Based on these studies, it was assumed that all traditional 
vehicles will be replaced by autonomous vehicles by the year of 2050. Furthermore, to 
achieve the expected risk minimization in autonomous navigation, the autonomous 
vehicle penetration should be at least 10% or more, and this penetration should be 
attained by the year 2030.  

2. U.S. population trends adopted in this study follow the trends described in the World 
Bank website, which states that the U.S. population is growing by approximately 3.12 
million people per year (95). 

3. Discount rate is used to calculate the present value of the future cash flow. The U.S. 
Office of Management and Budget (OMB) utilizes two discount rates: 3% and 7%, to 
evaluate projects involving intergenerational benefits and costs (96). Furthermore, the 
European Union suggests a range of discount rates depending on economic conditions, 
nature of investor(s), and the nature of the sector under consideration from a minimum 
value of 3% to a maximum of 11% (97). Other researchers used between 2.5% and 8% 
for railway projects in developed countries (98). In this study, the research team used 
net present values (NPV) of costs and benefits and assumed a discount rate of 6.5%. 

4. There were three benefits from risk minimization strategies considered in this study. 
They are 1) saving lives, i.e., fewer traffic deaths, 2) less traffic congestion yielding less 
time in heavy traffic, and 3) environmental improvement.  

Saving lives:  

With the evaluation of  traffic safety laws, i.e. minimum legal drinking age (MLDA) laws 
(99), and strict implementation of them, the trend of traffic crash rate (fatalities per 
100,000 people) is showing a decreasing tendency (100). The research team developed 
a regression equation based on the crash data of past 50 years. The crash data of past 
50 years collected from NHTSA is shown in Figure 7.  
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Figure 7: Crash rates (fatalities per 100,000 people) over last 50 years 

 

The simple regression equation developed in this study was utilized to estimate the 
crash rate for 2030. The proposed regression equation is given below:  

𝐶𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 = 26.38884 + (−0.32405) × 𝑌𝑒𝑎𝑟 

The value of a statistical life depends on the socio-economic conditions of the person, 
i.e.,  the income of the life being considered and the health condition/ risk of that person 
dying (101). It is difficult to estimate the correct value of a life. However, researchers 
adopted several alternative techniques to estimate the value of a statistical life. 
Economists relied on experts’ judgements using revealed preference (RP) surveys to 
determine statistically accurate values (102). Other researchers utilized meta-analysis 
of various parameters (103-105). The income elasticity plays an important role while 
estimating value of statistical life in low and high income population (101). Furthermore, 
mortality risk was used as a critical input for sound estimation (106). However, 
researchers also suggested that change in Gross Domestic Product (GDP) and 
Consumer Price Index (CPI) could transmit a downward bias over time (107). 
Meanwhile, Viscusi and Aldy proposed two regression techniques, i.e. ordinary least 
squares and robust estimation with Huber weights, to establish a wage-risk equation 
(108). US DOT embraced this wage-risk equation with an income elasticity of 0.55 and 
estimated the value of a statistical life equal to $6.2 million per life for the year of 2011. 
In this study, the research team used this value to calculate the value of lives saved 
after implementing risk minimization strategies.  

 



28 
 

Less traffic congestion yielding less time in heavy traffic:  

With advance sensing equipment, autonomous vehicles can find optimal routes and 
energy management strategies, and follow speed adjustments, which can lead to fuel 
saving and reductions in travel time and congestion. Researchers predicted that 
autonomous vehicles can reduce 5% to 15% of road congestion with 10% and 90% 
market penetration, respectively, on arterial roadways (5). Some researchers argue that 
new road user groups (e.g., elderly persons, children and disabled persons) are going 
to use autonomous vehicles and could increase the congestion level (111). However, 
the research team did not consider these issues, i.e. new road users,  in this study, and 
assumed the value of one hour travel is equivalent to $12.95 (109).  

 

Environmental improvement: 

The implementation of autonomous vehicles will also have potential of reducing 
environmental impacts/pollution. The reduced number of miles traveled will result in less 
tailpipe emissions. Four major exhaust pollutants emitted from tailpipe are considered in 
this analysis—carbon dioxide (CO2), nitrogen oxides (NOX), volatile organic compounds 
(VOC), and particulate matter (PM10) (112). The average emission rate of these 
pollutants and the average monetized values are summarized in Table 9. 

Table 9: Pollutants emission rate and monetized values 

 
Pollutants 

Emission 
Rate 

Monetized 
Value 

 
References 

Carbon dioxide (CO2) 367 g/VMT $27.26 /ton (109; 113) 

Nitrogen oxides (NOX) 0.8 g/VMT $5,944 /ton (109; 113) 

Volatile organic compounds (VOC) 0.3 g/VMT $325,231 /ton (109; 113) 

Particulate Matter (PM10) 0.11 g/VMT $1,458 /ton (109; 113) 

 

5. The major disadvantage of autonomous vehicle is high purchase costs due to 
installation of different advanced technologies such as sensors, communication 
technology, guidance system and software for the autonomous navigation. Researchers 
estimate that most current autonomous navigation applications cost over $100,000 and 
with mass production this will fall to additional $10,000 for automation features after ten 
years (5).  

The current costs of the back-up sensors and DSRC devices were collected from (114) 
and used in this study to conduct the benefits-costs analysis. The cost ranges are listed 
in Table 10 below. Then, the total number of autonomous vehicles expected was 
estimated to calculate the total cost of each additional sensor installed in the vehicles. 
This study’s research team found that there are 0.797 cars per person (115) and 
assumed this demand value will not change in future.  
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Table 10: Costs of back-up sensors and DSRC device 

 
No. 

Sensors and 
Devices 

 
Cost Ranges 

1. LIDAR $90-$8000 

2. Radar $125-$150 

 
3. 

 
Video Camera 

Mono: $125-$150 
Stereo: $150-$200 

4. GPS Device $80-$6000 

5. Wheel Encoder $80-$120 

6. DSRC Device $250-$350 

 

The benefits-costs ratios (BCRs) were calculated for the year of 2030 when 
autonomous vehicle market penetration rate will be 10% and 2050 when penetration will 
be 100% using the following equation. Tables 11 and 12 yield the results of benefits-
costs analysis for installing additional sensors and a DRSC device in autonomous 
vehicles. A sample calculation of Back-up LIDAR benefits-costs ratio is provided in 
Appendix D.  

𝐵𝐶𝑅 =  
𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠
 

 

From the results of benefits-costs analysis, an inference can be drawn that due to high 
price of LIDAR and GPS device installation, these sensors as backup sensors would not 
be beneficial, even in the year of 2050, when market penetration is projected to be 
100%. While the other sensors (Radar, video camera, wheel encoder, and DSRC 
device) could be cost effective, so installation costs of these sensors will be less 
burdensome due to the benefits of these sensors.   
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Table 11: Benefits-Costs Analysis for 2030 (Autonomous Vehicles Market Penetration 10%) 

 
 
Sensors/ 
Devices 

 
 
Crash 
Rate 

 
 
Lives 
Saved 

 
Values of 
Lives Saved 
(in million $) 

Value of 
Travel Time 
Saved (in 
million $) 

Value of 
Emission 
Reduction 
(in million $) 

 
Total 
Benefits 
(in million $) 

Net Present 
Value of 
Benefits (in 
million $) 

Net Present 
Value of Total 
Costs (in 
million $) 

Benefits 

Costs 
Ratio 
(BCR) 

LIDAR 5.001 284.87 1766.18 356.13 144.15 2266.46 20429.47 247520.00 0.08 

Radar 5.001 165.26 1024.64 356.13 144.15 1524.91 13745.24 4643.66 2.96 

Video 
Camera 

 
5.001 

 
208.90 

 
1295.19 

 
356.13 

 
144.15 

 
1795.47 

 
16184.05 

 
6188.00 

 
2.62 

GPS 
Device 

 
5.001 

 
149.30 

 
925.63 

 
356.13 

 
144.15 

 
1425.90 

 
12852.88 

 
185640.00 

 
0.07 

Wheel 
Encoder 

 
5.001 

 
194.98 

 
1208.85 

 
356.13 

 
144.15 

 
1709.12 

 
15405.74 

 
5346.43 

 
2.88 

DSRC 
devices 

 
5.001 

 
108.29 

 
671.43 

 
356.13 

 
144.15 

 
1171.70 

 
10561.53 

 
10829.00 

 
0.97 

 

Table 12: Benefits-costs analysis for 2050 (autonomous vehicles market penetration 100%) 

 

Sensors/ 
Devices 

 
 
Crash 
Rate 

 
Lives 
Saved 

 
Values of 
Lives Saved 
(in million $) 

Value of 
Travel Time 
Saved (in 
million $) 

Value of 
Emission 
Reduction 
(in million $) 

 
Total 
Benefits (in 
million $) 

Net Present 
Value of 
Benefits (in 
million $) 

Net Present 
Value of Total 
Costs (in 
million $) 

Benefits 
Costs 
Ratio 
(BCR) 

LIDAR 2.409 1603 9936.68 10683.75 432.45 21052.88 285826.66 2891200.00 0.09 

Radar 2.409 930 5764.71 10683.75 432.45 16880.91 229185.49 54180.97 4.23 

Video 
Camera 

 
2.409 

 
1175 

 
7286.85 

 
10683.75 

 
432.45 

 
18403.05 

 
249851.03 

 
72280.00 

 
3.46 

GPS  
Device 

 
2.409 

 
840 

 
5207.67 

 
10683.75 

 
432.45 

 
16323.87 

 
221622.78 

 
2168400.00 

 
0.10 

Wheel 
Encoder 

 
2.409 

 
1097 

 
6801.06 

 
10683.75 

 
432.45 

 
17917.26 

 
243255.64 

 
43368.00 

 
5.61 

DSRC 
devices 

 
2.409 

 
609 

 
3777.51 

 
10683.75 

 
432.45 

 
14893.70 

 
202205.97 

 
126490.00 

 
1.60 
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7.2 Advantages and Disadvantages of Identified Strategies 
The research team conducted further research to identify the advantages and 

disadvantages of each risk minimization strategy proposed in this study. Table 13 

represents the complete list of advantages and disadvantages of risk minimization 

strategies.  

Table 13: Advantages and Disadvantages of Identified Risk Minimization Strategies 

Risk Minimization Strategies Advantages Disadvantages 

Cut set: Failure of Communication System 

Installation of DSRC devices V2V communication Costly, hacking risk 

Installation of roadside DSRC V2I application Costly, hacking risk 

Regulation of priority based V2I and 
V2V communication 

 
High efficiency 

 
High penetration rate required 

Cut set: Hardware System Failure 

Installation of additional sensors Backup sensors Costly, space restriction  

Hardware inspections periodically Reduce chances of failure Human inspection errors 

Warning system in case of 
hardware failures and safely stop 
the vehicle.  

 
 
Safe navigation 

 
 
Sudden stop  

 
Cloud assisted navigation system 

Less computation power on 
vehicle  

 
Unreliable cloud system 

Cut set: Non-Autonomous Vehicle Crashes 

Separate lanes No non-AV involved crashes Costly 

On Bus/ HOV lanes  
Lanes are less crowded 

Less room for busses and 
carpooling 

Installation of black box  Better crash investigation Denial of installation 

Additional training/ materials for 
human drivers 

All drivers would be aware of 
how AVs operate 

Younger drivers more 
hesitant, Costly 

Cut set: Weather 

 
 
Testing in extreme weather 

More data available for 
development of better 
technologies  

 
 
Costly 

Standards for extreme weather 
performance  

 
Less liability in court 

Incapable of driving in some 
situations 

Forcing manual driving in bad 
weather  

Keeps the driver safe Not fully autonomous 

Internal heating/ cooling system for 
sensors 

Less damage from weather Costly 
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Cut set: Software Failure 

Self-adaptive algorithm for software 
system improvements  

 
Evolution in algorithm  

 
Not fully developed  

Cut set: Road Surface 

Sensors to evaluate road conditions Avoids obstacles better Additional cost  

Navigate without lane markings Safer without marking Limited distances 

Sharing surface condition data Planned navigation Storing data 

Cut set: Construction Zone 

Communication devices to 
construction sites 

 
Safer work zone 

Additional cost, law 
enforcement  

Sharing construction zone data Planned navigation Storing data 

Cut set: Pedestrians and Cyclists 

Pedestrians and cyclists tracking Less crashes Not fully developed  

Testing for pedestrians and cyclists  
safety 

 
Safe navigation 

Costly 

Cut set: Wrong Command System 

At least two methods of inputting 
commands 

 
Safer backup system 

 
Complexity in system  

Automatic background sounds 
truing off for voice command 

Increase in understanding of 
commands 

 
Consumer dissatisfaction 

Monitor driver to identify 
impairments 

 
Drivers more aware 

 
Inaccurate judgments  
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8. CONCLUSIONS  
Autonomous vehicles have the potential to transform existing transportation systems 
into a safe, and efficient next generation transportation system. However, performing a 
comprehensive risk analysis of an autonomous vehicle could lead to a safer roadway 
environment. Tackling the risks related to these early autonomous vehicle technologies 
would help fix considerable issues before their mass deployment on public roads. 
Successful identification of the risks related to both the vehicle and the surrounding 
infrastructure would help researchers and developers to improve the technology. 

This study utilized a fault tree-based risk analysis method to identify the most critical 
basic events that could lead to an autonomous vehicle failure. Findings from the fault 
tree analysis were used to develop risk minimization strategies to eliminate or reduce 
component failure risks that will improve overall autonomous vehicle reliability. 
However, continuous innovation in computing and communication technologies can 
significantly reduce this failure probability. In addition, from benefits-costs analysis it 
was found that installing back-up sensors and a DSRC device could be beneficial.  

However, due to limited availability of autonomous vehicle testing data it was not 
possible to conduct statistical validation. It is important to note that the number of 
experts responding to the survey was 7 out 140 (which is 5.0% of the total experts 
invited). This number of participants was too low to draw a strong inference. 
Furthermore, each basic event was assumed independent in this study, though 
correlations between these events may exist in some cases.  

In the future, interdependency among the basic events (i.e., vehicular sensors) should 
be investigated to conduct a risk analysis of autonomous vehicles. Furthermore, the 
failure probabilities of sensors or platforms should be validated from field tests of 
autonomous vehicles. Variation in the performance of sensors over time (i.e., time 
dependency on reliability) should be considered in future research. 
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APPENDIX A 

 

 

 

Sample Transportation Infrastructure Component Failure Probability Calculation:   

Number of crashes due to reckless driving (for non-AVs) = 69,284 per 100 million miles (61) 
Number of crashes due to tiredness (for non-AVs) = 3,121 per 100 million miles (61) 
Number of crashes due to distraction (for non-AVs) = 51,496 per 100 million miles (61) 
Number of crashes due to vehicle breakdown (for non-AVs) = 10,000 per 100 million miles (60) 
From above data, the total non-autonomous vehicle involved crashes = 133,901 per 100 million miles. 
Failure probability of non-AVs due to driver tiredness, reckless driving, driver distractions or vehicle 
breakdown = 133,901/(100×1000,000)×100=0.1339% per mile 
Failure probability of an AV involved in a crash with a non-autonomous vehicle = 0.1339× 10% 
=0.01339% per mile 
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APPENDIX C 
The responses of the question asking failure probability of Lidar:  

Participants Set of Options (failure probability ranges) in the question  

A: < 1.00 B:  

1.01 to 3.00 

C: 

3.01 to 6.00 

D:  

6.01 to 
10.00 

E: > 10.00 

1 0 0 5 0 0 

2 0 0 5 0 0 

3 0 0 5 0 0 

4 0 0 0 0 5 

5 0 0 0 0 5 

 

Number of experts, m = 5 

Number of options, n = 5 

Now, 𝑅 =  ∑ (𝑅𝑖 −  𝑅̅)2𝑛
𝑖= 1  = 200, where for each option, 𝑅𝑖 is the sum of the rating 

participants j provides to a specific option: 𝑅𝑖 = ∑ 𝑟𝑖𝑗
𝑚
𝑗=1  and 𝑅̅ is the mean of the 𝑅𝑖.  

Kendall’s W = 
12 ×𝑅

𝑚2 ×(𝑛3 − 𝑛)
 = 0.8  

The responses of the question asking failure probability of Camera:  

Participants Set of Options (failure probability ranges) in the question  

A: < 1.00 B:  

1.01 to 3.00 

C: 

3.01 to 6.00 

D:  

6.01 to 
10.00 

E: > 10.00 

1 0 5 0 0 0 

2 0 0 5 0 0 

3 0 0 0 5 0 

4 0 0 0 0 5 
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5 0 0 0 0 5 

 

As we mentioned before, m = 5, and n = 5, 

Now, 𝑅 =  ∑ (𝑅𝑖 −  𝑅̅)2𝑛
𝑖= 1  = 50  

Kendall’s W = 
12 ×𝑅

𝑚2 ×(𝑛3 − 𝑛)
 = 0.2  
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APPENDIX D 
 

Population in the year of 2030
=  Population in the year of 2011 +  Population growth rate 
×  number of years 

So, Population in the year of 2030 =  312000000 + 3120000 × 19 = 371280000 

Total Benefits Calculation:  

𝐶𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 100,000 𝑝𝑒𝑜𝑝𝑙𝑒 = 26.38884 + (−0.32405) × 𝑌𝑒𝑎𝑟 =   26.38884 +
(−0.32405) × 66 = 5.001  

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑎𝑡ℎ𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

100000
× 𝐶𝑟𝑎𝑠ℎ 𝑅𝑎𝑡𝑒 =  

371280000 

100000
× 5.001 = 18569.07  

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑒𝑎𝑡ℎ (%)𝑑𝑢𝑒 𝐵𝑎𝑐𝑘 𝐿𝐼𝐷𝐴𝑅 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
=  𝑉𝑎𝑙𝑢𝑒𝑓𝑟𝑜𝑚 𝑓𝑎𝑢𝑙𝑡 𝑡𝑟𝑒𝑒 × 𝑀𝑎𝑟𝑘𝑒𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 
= 0.15341 × 0.1 = 0.015341  

𝐿𝑖𝑣𝑒𝑠 𝑠𝑎𝑣𝑒𝑑 = 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑎𝑡ℎ𝑠 ×
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷𝑒𝑎𝑡ℎ (%)𝑑𝑢𝑒 𝐵𝑎𝑐𝑘 𝐿𝐼𝐷𝐴𝑅 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  =  284.87   

𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠 𝑠𝑎𝑣𝑒𝑑 = 𝐿𝑖𝑣𝑒𝑠 𝑠𝑎𝑣𝑒𝑑 × 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑙𝑖𝑓𝑒 = 284.87 ×
$6200000 = $1766180000  

𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑒𝑑 = 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑒𝑑 ×
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑜𝑛𝑒 ℎ𝑜𝑢𝑟 𝑡𝑟𝑎𝑣𝑒𝑙 = (0.1 × 0.05 × 5500000000 ) × $12.95 = $356130000  

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑎𝑣𝑒𝑙 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 𝑠𝑎𝑣𝑒𝑑 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = (0.1 × 0.05 ×
5500000000 × 30) × 367 = 3027750000000 𝑔𝑚 =  3337522.115 𝑡𝑜𝑛𝑠   

𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ×
𝐶𝑜𝑠𝑡 𝑖𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 3337522.115 × $27.26 = $90980852.86  

𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝐶𝑂2 + 𝑁𝑂𝑋 + 𝑉𝑂𝐶 + 𝑃𝑀)
= 90980852.86 + 43244101.26 +  3977744.341 + 5946063.923
= $144148762.4 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑖𝑛 2030 = 𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠 𝑠𝑎𝑣𝑒𝑑 +
𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑒𝑑 + 𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
 $2266460000  

So, 𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑤𝑜𝑟𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =  
(1+𝑖)𝑁 −1

𝑖(1+𝑖)𝑁 =  
(1+0.065)14 −1

0.065(1+0.065)14 =  9.01384233   

𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑒𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑖𝑛 2030 ×
 𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑤𝑜𝑟𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 = $2266460000 × 9.01384233 = $20429470000     

Total Costs Calculation:  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 2030 =  
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 2030 

1.2
=  309400000  
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 2030 =
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 2030 × 𝑀𝑎𝑟𝑘𝑒𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
 30940000   

𝐵𝑎𝑐𝑘 − 𝑢𝑝 𝐿𝐼𝐷𝐴𝑅 𝑐𝑜𝑠𝑡 =  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 2030 ×
𝐿𝐼𝐷𝐴𝑅 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 = 30940000 × $8000 = $247520000000   

 

Benefits Costs Calculation:  

𝐵𝐶𝑅 =  
𝑁𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝐵𝑎𝑐𝑘−𝑢𝑝 𝐿𝐼𝐷𝐴𝑅 𝑐𝑜𝑠𝑡
=

$20429470000

$247520000000
= 0.08   
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New York, NY 10031
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