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EXECUTIVE SUMMARY 

Infrastructure monitoring, inspection, and management is essential in ensuring the aging 

infrastructure is in a state of good repair, and is one the nation’s top priorities. Maintaining 

expected performance levels for various infrastructure elements has become increasingly 

challenging in recent years, due to a number of factors, two of which include limited availability 

of funding, and increased occurrence and severity of extreme weather events. In particular, over 

21,000 bridges over water have been deemed scour critical in the United States, with the numbers 

expected to grow. Faced with limited funding, states need to prioritize bridge scour monitoring, 

inspection, and mitigation programs, particularly in preparation for, and in the wake of, extreme 

events.  

In this study, a cost-effective methodology was presented to conduct bridge scour assessment 

using autonomous underwater vehicles (AUV). There are several advantages to using AUVs in 

bridge scour monitoring, including (1) the proposed AUV is designed to be ruggedized and cost-

effective, allowing states to deploy multiple units under unfavorable conditions, such as those 

experienced during a flooding event; (2) AUVs are portable units, and can be re-deployed at 

different locations; (3) they are able to produce bathymetric data from the entire channel, in 

addition to pier, contraction, and abutment scour hole depth; (4) they are equipped with optical 

cameras, which can be used to replace or supplement diving activities for bridge pier health 

monitoring, in addition to scour assessment; (5) AUVs can be equipped with multiple other 

sensors, allowing them to sample the stream bed, and to collect data regarding stream bed 

hydraulic properties, which is time-consuming and expensive to acquire by other means. As part 

of this study, an existing AUV was adapted for use in bridge scour monitoring. Software and 

hardware developments, as well as the required instrumentation were described. Image 

processing algorithms were developed to automatically segment and identify key components 

relevant to scour quantification at bridge piers following AUV missions. Simulations were 

conducted on autonomous navigation using a state-of-the-art simulation environment for AUVs. 
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The advances documented in this project support ongoing efforts to employ AUVs in bridge 

scour monitoring. 

In order to implement the use of AUVs by local authorities in prioritized scour monitoring and 

inspection programs, a site-specific RISK assessment model was implemented, which facilitates 

the AUV deployment prioritization. Details of the risk assessment model, which is based on risk 

assessment methods developed by Stein et al. (1999; 2006), and uses National Bridge Inventory 

(NBI) data, were presented. The model was compiled on a geographic information system (GIS)-

based platform to streamline the decision-making process, particularly in wake of extreme 

weather events. 
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1. BACKGROUND AND PROBLEM STATEMENT 

Improving and sustaining the condition of the transportation infrastructure is one of USDOT’s 

main strategic goals. An important step toward ensuring the infrastructure is in a state of good 

repair is to implement robust condition assessment and monitoring systems, so that updated 

information is available on the current status of the various infrastructure and transportation 

elements. In recent years, there has been an increase in occurrence and severity of extreme 

weather events. Flooding associated with heavy storms and hurricanes has caused severe damage 

to the already strained, and aging, existing infrastructure. In particular, flooding and flow surge 

in rivers and streams pose a serious risk of scour failure to bridges. Climate change has 

exacerbated hazards from flooding and extreme events. Ensuring that bridges are safe against 

extreme events requires continuous monitoring and inspection efforts, often beyond depleted 

state budgets. Prioritization of scour monitoring and countermeasure installation, particularly in 

wake of extreme events, remains a top priority toward maintaining the functionality of the 

transportation infrastructure.  

Scour is the primary cause of bridge failure in the United States (Hunt 2009). Over 21,000 bridges 

have been determined scour critical in the U.S. (Gee 2008). Scour countermeasures are installed 

for bridges where scour poses a serious risk to structural safety. However, installation of scour 

countermeasures is not a permanent solution to the scour problem. The best practice in scour 

mitigation is, as recommended by FHWA HEC-18, to use a combination of scour monitoring and 

countermeasure installation (Melville and Coleman 2000; Hunt 2009). Bridge scour monitoring, 

therefore, constitutes an important component of a scour mitigation program, to ensure safety 

and a state of good repair for bridges. 

There is an increasing need for monitoring scour at other locations in the vicinity of a bridge, 

because (1) scour can occur around the pier (termed pier scour), in the river bed where the bridge 

piers are installed (contraction scour), or at the abutments (abutment scour); (2) scour 

countermeasures, including riprap armors, can fail due to various mechanisms, which 

necessitates monitoring of the scour countermeasure, in addition to the scour hole itself; (3) 
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Availability of scour data can greatly support scour research. According to a USGS memorandum 

(USGS 2003; after Hunt 2009), “scour monitoring projects can represent a significant opportunity 

to collect field data that can be used for scientific research, while meeting a fundamental need of 

many highway departments.” 

Autonomous underwater vehicles are portable devices capable of monitoring scour conditions in 

bridges. However, technological and practical restrictions have limited their use in bridge scour 

monitoring programs in the past. In this study, a framework to employ autonomous underwater 

vehicles (AUV) as a portable scour monitoring tool is presented. The premise of this research is 

that AUVs can be used for inspection, condition assessment, and health monitoring of bridges. In 

particular, cost-effective, ruggedized AUVs can be employed before, during, and after extreme 

weather events, such as floods, to prioritize scour monitoring and mitigation plans, thereby 

optimizing allocation of limited resources.  

Deployment of AUVs for routine bridge scour inspection in general, and for emergency condition 

assessment following extreme events in particular, requires a decision-making algorithm, which 

factors in the risk associated with scour-induced bridge failure. In this study, an AUV was 

adapted for use in scour monitoring. Significant hardware and software modifications were made 

to allow for robust mapping of the streambed, as wells as for visual inspection of bridge pier 

conditions. A risk-based decision-making tool was also developed to facilitate prioritization of 

AUV deployment for monitoring and condition assessment before, during, and after extreme 

events.  

2. LITERATURE REVIEW 

Scour is the primary cause of bridge failure in the United States (Hunt 2009). Over 21,000 bridges 

have been determined as scour critical (Gee 2008), that is, the foundation of these bridges has 

been determined to be unstable for the calculated/observed scour condition. Experience with 

monitoring and mitigation of scour has revealed that the best practice in scour mitigation is to 

use a combination of scour monitoring and countermeasure installation.  



 5 

Many scour monitoring systems have been developed, and successfully installed, in recent years 

(Prendergast and Gavin 2014). Both fixed and portable scour monitoring systems have been 

developed. In most cases, bridge scour monitoring involves placing fixed scour monitoring 

systems to monitor scour hole depth, predominantly in the vicinity of piers. Fixed instruments 

placed near bridge piers are often used to continuously monitor scour at bridges. Portable 

instruments, however, are a more cost-effective means of monitoring scour at bridges (Schall and 

Price 2004). They can be used to monitor scour along the streambed, and can be used in multiple 

bridges. The main drawbacks of a portable scour monitoring system include (Hunt 2009): (1) 

continuous monitoring is not available for portable monitors, and (2) access to the bridge is often 

restricted during a storm event. 

There has been a recent surge of interest in design and construction of autonomous underwater 

vehicles (AUV) and remotely operated vehicles (ROV) (Antonelli 2014; Sørensen and Ludvigsen 

2015). Rapid technological advances have made AUVs and ROVs more viable and competitive 

compared to existing methods of marine operations, including monitoring and sampling. 

Multiple commercial and industrial applications already benefit from AUVs, or have invested in 

their development for future use (e.g., Gilmour et al. 2012). As a result of rapid advances in 

control, navigation, instrumentation, and processing power, AUVs have now become a viable 

means of underwater exploration. While AUVs have been used by the United States Geological 

Survey (USGS) to obtain bathymetric data, mainly in deep waters, AUVs with accurate thrusting 

and navigation systems can be used in riverine environments as well. Rapid reduction of 

manufacturing and operation costs due to technological advances have now made AUVs as 

viable tools for river and stream bed monitoring, for applications such as scour monitoring. It is 

expected that future developments in this field will accelerate these trends. 

Bridge inspection and monitoring is crucial in ensuring the safety of the aging transportation 

infrastructure. There are currently over 484,500 bridges constructed over water in the United 

States. According to FHWA guidelines, bridges require inspections at least every two years. 

Limited resources at the state level have necessitated prioritization of scour monitoring and 

mitigation efforts in many states. Design of new bridges has been re-evaluated in recent years in 
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order to incorporate risk and uncertainty in scour predictions (e.g., LaGasse et al. 2013). Risk-

based models have also been incorporated in the decision-making process of scour monitoring 

and mitigation efforts, and have been used as a means to optimize expenditure of increasingly 

limited resources to ensure bridge safety against scour failure. A risk assessment model was 

introduced by the FHWA to prioritize scour-vulnerable bridges in the U.S. (Stein et al. 1999; Stein 

and Sedmera 2006). The model, known as HYRISK, defines risk as a product of the probability of 

scour failure and the costs associated with failure. The model has been updated to incorporate a 

more refined definition of the costs of failure. More recently, Khelifa et al. (2013) presented 

modifications to the HYRISK model to update the cost of failure, and to incorporate loss of life in 

the cost analysis. In addition, the model by Khelifa et al. (2013) presents a framework for 

incorporating climate change scenarios in scour risk assessment. A simpler approach has been 

presented by Johnson and Whittington (2011) for risk assessment of stream instability at bridge 

sites, which defines risk as the product of vulnerability of the bridge to scour failure, and 

criticality of scour conditions at the bridge. Both the HYRISK model and the model presented by 

Johnson and Whittington were designed to draw data from the National Bridge Inventory (NBI), 

which is maintained by the FHWA, and includes data from bridge inspections at the state level. 

The aforementioned risk assessment tools can be employed at the state level to effectively 

prioritize limited resources to scour monitoring and mitigation. 

Inspired by the progress achieved in self-driving cars, state-of-the-art AUV technologies allow 

for collection of data in the challenging underwater environment. Signal processing, scene 

generation, interpretation, and action (i.e., navigation) algorithms can be developed to navigate 

in the underwater environment to precise and accurate locations and vessel attitudes, and to 

collect quantifiable three-dimensional image data, so that bridge scour holes can be assessed 

under conditions that are now not compatible with diving operations.  

The sonar technology available to the commercial and consumer user has dramatically advanced 

in recent years. Transducer technology is capable of forward and side scanning. They also now 

achieve wider bandwidths, which facilitate a broader choice in frequency selection and even chirp 

spread-spectrum techniques. Meanwhile, the analog to digital boundary has moved in favor of 
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the digital domain, enabling inexpensive, low power, but advanced digital signal processing. 

These advances result in a greater awareness of the underwater environment around a vessel. 

The acoustic channel is very challenging; it is noisy and cluttered. Furthermore, the water 

environment can have temperature and salinity gradients, which can refract the propagation of 

the acoustic wave. Because high frequency sound is greatly attenuated in water, most sonars 

operate in the tens to hundreds of kHz range. In contrast, radars typically operate in the tens of 

GHz range. The velocity of sound in water is slower than the speed of electromagnetic waves in 

free space, the wavelengths of sonar and radar are comparable. Unfortunately, it is not as practical 

to scale the aperture of the transducer as it is in radar applications. The size of the aperture relative 

to the wavelength determines to a significant degree the width of the beam of energy. This has a 

large impact on the resolving power of the imaging system. Minimum resolvable feature size is 

on the order of the wavelength of the beam, but also a strong function of the beam width. Since 

the bridge scour application can use short range imaging, image resolution can be improved by 

increasing the frequency. Some special purpose transducers can be developed at the MHz range 

with large relative apertures, but still convenient to mount on a small vessel. The development of 

such a system is an expensive custom process. Before embarking on this path, it is important to 

establish the feasibility of the autonomous navigation and obstacle avoidance system and develop 

the necessary signal processing, scene generation, and interpretation algorithms with existing 

hardware platforms. The present study aims to contribute to the state of the art in this field 

through introduction of new hardware and software improvements to accommodate scour hole 

monitoring using AUVs, as described in the next sections. 

3. METHODOLOGY AND APPROACH  

The study consisted of three parts. The first part, described in section four of this report, involved 

adapting an autonomous underwater vehicle (AUV) for bridge scour monitoring and inspection. 

The AUV adaptations consisted of hardware upgrades, including improvements on fabrication, 

upgrades on motor components for navigation in riverine environments, navigation, onboard 

processors, and instrumentation to accommodate collection of bathymetric data from a bridge 

site. 
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The second part of the study, summarized in section five of this report, included development of 

codes, algorithms, and simulations to guide navigation of the AUV, and to process typical digital 

images collected in AUV missions at bridge pier sites. This part of the study consisted of the 

following steps: 

• Develop codes and algorithms to analyze typical acoustic images of bridge piers for 

extraction of features of interest to scour monitoring, including the bridge pier structure 

and the riverbed outline. Methods developed included preprocessing using the Savitsky-

Golay filter and entropy and range filtering, edge detection algorithms using the Prewitt 

operator, the Gabor filter, and K-means clustering, and the use of Hough transform. The 

algorithms were implemented in Matlab and OpenCV. Details of the image processing 

algorithms, the underlying theory, and results applied to a set of sample acoustic images 

are presented. 

• Simulation of AUV path finding and navigation using the state-of-the-art Mission 

Oriented Operating Suite (MOOS) simulation environment, which is a multi-objective 

optimization system based on interval programming. A navigation algorithm was 

programmed to allow for typical AUV scour monitoring missions. 

Finally, the third part of the study, detailed in section six of this report, consisted of 

developing a geographic information system (GIS)-based platform to prioritize bridge scour 

monitoring and inspection programs using AUVs and other methods. A risk assessment 

model based on the HYRISK model by Stein et al. (2006) was implemented by computing 

probability of failure and cost of failure for over 10,200 bridges in New York state for which 

scour susceptibility was applicable. Risk of scour-related failure was defined as the product 

of the probability of failure and the cost of failure, along with several risk adjustment factors. 

Data from the National Bridge Inventory (NBI) was used to compile a database of bridge 

properties relevant to the HYRISK model. The model uses several NBI items to quantify the 

probability of failure for a given bridge using overtopping frequency and scour vulnerability 

interpretations from the NBI data. The NBI items used to compute the probability of failure 



 9 

included the functional class (NBI item 26), waterway adequacy (NBI item 71), scour 

vulnerability (NBI item 61) and substructure conditions (NBI item 60). Cost of failure was 

quantified for each bridge as the product of the rebuilding cost, the running cost, time loss 

cost, and the cost of life. All relevant data was compiled in a GIS map of New York State, 

using the software ArcGIS. 

In the following sections, details of each of the aforementioned components of the study are 

described in further detail. Examples are presented in the case of the image processing 

algorithms, and risk maps and risk tables are presented for the GIS-based risk assessment 

model. 

4. AUTONOMOUS UNDERWATER VEHICLE (AUV) DESIGN AND 

DEVELOPMENT 

The Harbor AUV, currently in final development stages by DURO AUS, is a hybrid autonomous 

system that is being designed for operation in littoral or shallow coastal waterways and harbors 

such as those found in the NY Harbor and surrounding areas, with a focus on infrastructure 

inspection and environmental monitoring. 

The main purpose of employing an AUV for scour monitoring in this study was to enable bridge 

inspection and condition assessment before, during, and after high flow and storm events. The 

AUV was designed to operate under adverse circumstances, such as those encountered during 

flooding. Another advantage of the AUV developed in this study for scour assessment is that it 

is rugged, yet cost-effective. The designers of the AUV developed the vehicle as a robust, yet cost-

effective tool for underwater data acquisition. It can therefore serve as a valuable tool in scour 

assessment and monitoring programs in states with a large number of scour-critical bridges, such 

as New York. 

The feasibility of using the technology described above was demonstrated. Key enabling 

technology was developed in the form of custom algorithms running on embedded computing 
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hardware. Simulations were carried out in virtual environments to demonstrate the effectiveness 

of the developed algorithms.  

The Harbor AUV combines the movement capabilities of a tethered remotely operated vehicle 

(ROV) with the freedom and flexibility of an AUV. Below are some technical details of the vehicle, 

shown in Figure 1. 

 

Figure 1. Side view of the Harbor AUV under development for scour monitoring of bridge piers. 

Physical Design: The AUV was mostly fabricated using aluminum and composite materials, and 

consisted of five thrusters as well as four rudders in a torpedo-shaped design to maximize 

hydrodynamic properties. Over 85% of the vehicle was made in-house using additive 

manufacturing and advanced manufacturing techniques. 

Motor Components: The Harbor AUV uses five thrusters in total to achieve over five degrees of 

freedom while in operation. The thrusters also act as correctional thrusters in heavy currents. 

Four of the thrusters (orange propellers shown in Figure 2) are custom-made while the main rear 

thruster, shown in Figure 3, was manufactured by Maxon Motors (MT 40). The horizontal and 

vertical thrusters were custom made and provide over 8 lb of thrust in both forward and reverse 

directions. The main thruster provided over 22 lb of thrust. 
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Figure 2. One of the five thrusters used in the Harbor AUV (top), and close-up of a thruster used for 

navigation and path correction. 
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Figure 3. Main rear thruster used in the Harbor AUV. 

Navigation Components: Navigation for the vehicle is still in the testing phase with 

developments underway for full autonomy. Navigation will be achieved using a variety of 

sensors to help localize the vehicle during missions. Some of the initial components developed 

during this study are as follows: 

- IMU – DURO AUS is currently collaborating with X-IO Technologies to incorporate the 

NGIMU (Figure 4) onto the Harbor AUV. The IMU on-board sensors include a triple-axis 

gyroscope, accelerometer and magnetometer, as well as a barometric pressure sensor and 

humidity sensor. An on-board AHRS sensor fusion algorithm combines inertial and 

magnetic measurements to provide a drift-free measurement of orientation relative to the 

Earth. Each device is individually calibrated using robotic equipment to achieve the 

specified accuracy. Serial data sources, such as GPS modules, can be connected to the 

auxiliary serial interface. 

- Real-time communication – This is achieved via USB, Wi-Fi, or serial/RS-232. Data may 

also be logged to an on-board micro SD card. The NGIMU uses the popular OSC 

communication protocol, which makes it immediately compatible with many software 
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applications, and is straightforward to integrate with custom applications with libraries 

available for most programming languages. 

 

Figure 4. X-IO NGIMU with UBlox GPS module attached. 

Onboard Processors: The Harbor AUV has 3 computers onboard, each dedicated to different 

tasks in the vehicle. Work is currently underway to reduce the processors by one unit to reduce 

power consumption and increase processing speeds. The processors include (1) Jetson TX1: This 

unit is the main computer used for image processing and control systems. This unit is responsible 

for the simultaneous localization and mapping (SLAM) system developed as part of this study, 

as well as for machine vision for pier and object detection, also developed in this study. The 

NVIDIA Jetson TX1 module embedded in the AUV is comprised of four ARM 64-bit Cortex-A57 

CPU cores (max frequency of 1.91GHz) and four Cortex-A53 low-power cores, 4GB of LPDDR4 

memory with 25.6GB/s of memory bandwidth, and has a 256-core Maxwell graphics processor 

capable of 1 TFLOP/s. (2, 3) Raspberry Pi and Arduino: The other two microcontrollers or 

processors are used for basic functions such as running the custom-built leak sensors, strobe, 

rudder controls and correctional thrusters, among other functions. 

Instrumentation: While multiple sensors can be mounted on the AUV, the main instruments 

currently mounted include a sonar unit and an optical imaging unit. An Echologger MRS900 
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Scanning Sonar unit was mounted on the AUV as part of this study (Figure 5). Testing is currently 

under way in a controlled pool-testing environment. Though initial tests were promising, DURO 

AUS is currently investigating other scanning sonar units as well, including the Tritech Micron 

Sonar Scanner and the TriTech Starfish 453 side scan sonar unit as well. 

 

Figure 5. The AUV payload bay, showing the mounted end of the Echologger MRS900. 

Communication: The main communication functions of the AUV are currently achieved in two 

ways. For initial testing of the prototype a tether is attached to the vehicle through a penetrator 

in the computer vessel that allows for operation and communication with the vehicle. The 

tethered control also allows for real time feedback on the AUV during initial tests. An Xbee RF 

Module (Figure 6) that operates at 2.4ghz is currently used for above ground communication. 

Pool testing of autonomous navigation and control is currently underway, but was not fully 

achieved during initial tests carried out over the duration of this study. The focus for Duro UAS 

was to develop a stable platform that could collect reliable, high resolution imagery using a 

variety of sonars and cameras. Work is currently underway for incorporating high-speed acoustic 

modems for surface vessels for AUV communication and data transfer. 
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Figure 6. AUV Mast, which houses a pressure sensor, strobe, Xbee module, Dorji RF module and GPS 

antenna. 

Setbacks: Numerous setbacks slowed initial progress in the project. The main setbacks included 

issues with thruster functionality and power distribution, as described below.  

- Thruster issues: Initially, the thrusters used on the AUV (Blue Robotics) had technical 

issues related to their manufacturing process. Ultimately, in-house thrusters were 

designed and manufactured, as described in previous sections. 

- Power distribution: Issues were encountered with the power system, resulting in certain 

systems turning off or powering down due to back electromagnetic frequency or spikes 

in voltage. This was solved by fabricating in-house power distribution boards, an example 

of which is shown in Figure 7. 
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Figure 7. In-house power distribution board mounted on the AUV. 

Future developments: The main developments underway for the AUV include integration of 

DVL into the system for more accurate autonomous navigation, achieving full autonomy, 

incorporating machine vision capabilities developed as part of this study into the onboard 

processors, further reducing power consumption, and optimization of vehicle power distribution, 

among others.  

5. IMAGE PROCESSING ALGORITHMS FOR SCOUR IDENTIFICATION 

Because of the poor lighting conditions and opaqueness of the water environment due to its 

turbidity, efforts were focused on sonar imaging. Sonar images are notoriously noisy and limited 

in resolution. This requires significant signal processing to extract reliable and measurable 

information. Robotics researchers have been advancing Simultaneous Location and Mapping 

(SLAM) technology. This study aimed to leverage SLAM research, particularly in navigation and 

occupancy mapping, which allowed the authors to focus on image processing of the sonar signal. 

While the AUV can be equipped with video imaging capabilities, the scope of the present work 

was limited to navigation technology and programming, as well as processing of sonar images. 

The developed image processing algorithms are presented in this section, and navigation 

simulation is described in the next section. Because this work was done before the vehicle could 

be equipped with the sonar and cruised in the water, it was based upon images produced by fixed 
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imagers from commercially available sources and other existing literature. Six cases were 

considered, shown in Figure 8 and Figure 9.  

 

Figure 8. Acoustic images for cases one through three used to develop image processing algorithms in 

this study1.  

                                                   
1 Source: (a) Sonar Image Finland; http://www.tcbusinessnews.com/wp-content/uploads/2015/06/Sonar.jpg; (b) New 

Sonar Technology; https://www.508mystery.com/single-post/2015/11/26/NEW-SONAR-TECHNOLOGY; (c) 

Underwater Bridge Inspection; http://www.prweb.com/releases/2014/05/prweb11841442.htm. 

(a) 

(b) 

(c) 
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Figure 9. Acoustic images for cases four through six used to develop image processing algorithms in 

this study2.  

The image processing algorithm consisted of three steps:  

                                                   
2 Source: (a) Bridge in 3D; http://www.goodnewsfinland.com/wp-content/uploads/2015/08/VRT_bridge_3D.jpg; (b) 

Bridge Pier Elevation with Underwater Sonar Imaging ; http://www.pcs-civil.com/services/underwater-

inspections/sonar-imaging-system; (c) Usługi - Badania obiektów i konstrukcji hydrotechnicznych; 

http://www.escort.com.pl/badania-obiektow-i-budowli-hydrotechnicznych 

(a) 

(b) 

(c) 
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(1) In the first step of the algorithm, sonar images were filtered and the bridge pier features of 

interest, that is, the bridge pier structure and the river bed, were extracted.  

(2) In the second step, texture-based segmentation was used to separate the bridge pier and 

riverbed from the background.  

(3) Finally, in the third step the outline of the riverbed was analyzed and classified for tagging 

into the GIS database following typical AUV missions.  

These steps were implemented in Matlab and were tested on the sample images shown in Figure 

8 and Figure 9. After the algorithm was established and characterized, key parts were converted 

to OpenCV in C++ to run in real-time on a Jetson TX1 embedded processor mounted in the AUV. 

The three parts of the image processing algorithm are described next. 

 Image processing algorithm step I: bridge feature extraction 

In the first part of the algorithm, the vertical outline of the bridge pier was identified. The image 

processing components used are shown in Figure 10. The key techniques used in this process 

were Savitzky-Golay Filtering (Schaffer 2011; Gander and Matt 1997) and statistical analyses for 

preprocessing, and finally edge detection and the Hough Transform (Duda and Hart 1972; Hart 

2009) to extract the aforementioned features. In the following sections, the theoretical basis for 

each of the components is presented. Results of the image processing applied to the six images 

shown in Figure 8 and Figure 9 are presented in Section 5.4. 

 

Figure 10. Step 1 of the algorithm – bridge feature extraction. 
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5.1.1. Savitzky-Golay filtering: data reduction and signal enhancement 

The procedure to reduce or smooth the noise of a measured signal is commonly known as low 

pass filtering. High frequency components within the image are removed to allow for more 

gradual variations in the image, thus smoothing the image information. An array of smoothing 

techniques was considered including Gaussian Filtering, Moving Average filtering, and ensemble 

Filtering. The Savitzky-Golay Filter was recognized as the most suitable for the current input 

data. Savitzky-Golay smoothing filters are used to smooth out a noisy signal where the noiseless 

frequency span is large. With this kind of application, Savitzky-Golay smoothing performance is 

superior to standard averaging finite impulse response (FIR) filters (Shaffer 2011), which are 

prone to filtering out a large portion of the signal's high frequency content along with the noise. 

The Savitzky-Golay filter, like the moving average filter, calculates an average value of the 

neighboring data at every pixel. The Savitzky-Golay filter enriches the concept of a moving 

average by fitting a polynomial through the fixed number of points, as defined by the window, 

or frame length (Press et al. 1997). 

Images were first converted to grayscale for processing. Next, the Savitzky-Golay filter was 

applied to the grayscale image. This can be done in the vertical, horizontal or both directions. 

Because the object of interest was the bridge pier, the filter was applied only in the vertical 

direction to smooth imperfections in the boundary pixels in the original edges, thus eliminating 

horizontal noise and enhancing vertical edges. The Savitzky-Golay filter smooths the image much 

like a moving average filter, where a polynomial of a certain order is fit to the data within a 

window size. Thus, the order and window size are unique to the application. For all of the images 

considered, a window size of approximately 15% of the image was experimentally found to be 

sufficient. A third order smoothing fit was implemented because it had a greater impact on the 

smoothing. 

5.1.2. Entropy and range: statistical and morphological preprocessing 

Entropy is a method to measure the randomness of intensity distribution in a digital image, often 

to designate between areas of uniform and irregular intensities (Jeynes 1957). The method 
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innately lends itself well to edge detection and texture analysis.  Entropy was used to separate 

the foreground from the background and then, range filtering was applied to extract a 

preliminary bridge boundary.  Entropy measures the difference amongst pixels through a 

measure of randomness in a local neighborhood, which was set to nine pixels in this study.  Range 

locally characterizes the range of pixel values according to a local neighborhood, which was set 

to a finer three-pixel neighborhood.  This is unique in its use of wider to finer area of applying 

the statistical filter. A wavelet approach was considered as an alternative to these statistical 

measures but was deferred to future work. 

Shannon Entropy was implemented for the bridge pier images, which is the entropy metric 

implemented in Matlab. Entropy and range preprocessing were used dually in this algorithm: 

first, to clean the image for edge detection and secondly, to segment the image via texture 

analysis. Entropy alone is commonly used to preprocess and define thresholds in these domains; 

however, the combined use of entropy and range as a preprocessing technique was original to 

this algorithm. 

Statistics 

Statistical methods play a key role in feature extraction and identification techniques in image 

processing. To apply these techniques successfully, the data must be formatted as a statistical 

measure. This was achieved through gray-level Histogramming. From the histogram, a 

quantification of higher-order statistical properties can be derived to characterize texture 

(Materka and Strzlecki 1998). 

The entropy is a measure of histogram uniformity through the energy, or information, of the 

image. Thus, in image analysis, the intensity information is measured as Shannon’s entropy 

where, instead of applying an unknown probability distribution, the normalized histogram 

function	𝑝(𝑖) is used. The entropy measures evaluated allow for the discernment of texture 

patterns which are based on their entropy values. They can also be used for edge detection, 

thresholding, and as discussed, texture analysis. Entropy values of the image are generally 
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evaluated globally, but, by using Entropy filtering, a measure of entropy within regions of the 

image can be found. 

Entropy Filtering  

Entropy filtering requires the substitution of pixel values in the image by values of entropy.  

Entropy computations are made in the user-specified area, in the pixel-neighborhood of the input 

image.  For small neighborhoods the local disturbances will be given weight, and the output 

image will be too noisy. Conversely, an excessively large value will not facilitate the perseveration 

of details, and the output image will be blurred. Neighborhood selection is a trade-off between a 

noisy and blurry image.   

Other possible features derived from the histogram are the minimum, the maximum, median 

value, and the range. The latter was used in conjunction with entropy to act as a combined filter 

for image preprocessing in both edge detection and texture analysis, which is used in Step 2 of 

the Algorithm. There is an analogous relationship between range and range filtering.  Here, range 

gives insight into the statistical dispersion of the data. Range mainly depends on the 

neighborhood size of observations, as it is used in representing the dispersion of small datasets. 

The main effect achieved by the range is to amplify the effect of entropy filtering onto the image 

as a two-stage preprocessing technique (Flemming 2009). Although entropy filtration strongly 

relies on the size of the neighborhood considered and can visually produce a noisy or blurry 

output, it was found to be the most effective for this study.  

Entropy in edge detection 

Edge detection is the process of finding sharp discontinuities in an image. The discontinuities are 

from various scene features, for example:  changes in material properties, variations in scene 

illumination, discontinuities in depth, and discontinuities in surface orientation.  In this study a 

combined entropy and range filtering was applied as a preprocessing technique to amplify local 

edges and textures for a Prewitt edge detector, discussed below. Because information from 

independent events can be additively decomposed, the probability distributions of the 
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background, 𝑝	&(𝑖) and object 𝑝'(𝑖) can be partitioned from the normalized histogram 𝑝(𝑖) (El-

Sayed 2011).  

The relationships between 𝑝'(𝑖),	𝑝	&(𝑖) and 𝑝(𝑖) are shown in Eq. 1-4 (El-Sayed 2011). The change 

in the limits of the summation are the main differences between Po the histogram of the object 

and PB, the histogram of the background: 

𝒑𝒐(𝒊):	
𝒑𝟏
𝑷𝒐
, 𝒑𝟐
𝑷𝒐
, … 𝒑𝒕

𝑷𝒐
 (1) 

𝒑𝒃(𝒊):	
𝒑𝒕3𝟏
𝑷𝑩

, 𝒑𝒕3𝟐
𝑷𝑩

, … 𝒑𝒌
𝑷𝑩

 (2) 

𝑷𝑶 = −	∑ 𝒑(𝒊)𝒕
𝒊:𝟏  (3) 

𝑷𝑩 = −	∑ 𝒑(𝒊)𝒌
𝒊:𝒕;𝟏  (4) 

where t is the threshold value.  The entropy of pixels and the entropy of the pixels defining the 

object of interest and the background, respectively, are expressed in order, as follows: 

𝑯 = −	∑ 𝒑(𝒊)𝑮>𝟏
𝒊:𝟎 𝐥𝐨𝐠𝟐 𝒑(𝒊)	  (5) 

𝑯𝒐 = −	∑ 𝒑𝒊(𝒊)𝒕
𝒊:𝟏 𝐥𝐨𝐠𝟐 𝒑𝒊(𝒊)	  (6) 

𝑯𝑩 = −	∑ 𝒑𝒊(𝒊)𝒌
𝒊:𝒕;𝟏 𝐥𝐨𝐠𝟐 𝒑𝒊(𝒊)	 (7) 

Entropy is therefore dependent upon the threshold value (t) for the background and the object, 

and is calculated as the sum of all entropies.  Maximizing the amount of information between the 

two classes (object and background) is the goal (Leung 1996). With entropy maximized, the 

luminance level, t, which maximizes the function, is known as the optimum threshold value: 

𝒕𝒐𝒑𝒕 = 𝐦𝐚𝐱	[𝑯𝒐(𝒕) + 𝑯𝑩(𝒕)] (8) 

Instead of using entropy to customize thresholding values of the edge detector based on the input, 

applying entropy and range as a preprocessing technique to a static threshold in the edge detector 

was done.  In deployment, updating the threshold based on the detected entropy and image noise 
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would be of use to improve the accuracy of the edge detector, scalability of the algorithm and 

improve robustness to sources of noise. 

Implementation of entropy and range 

Matlab’s entropy function can be used to calculate the entropy of a grayscale image.  The Matlab 

entropy function outputs a scalar value for the global entropy of the image.  As a statistical 

measure of randomness, entropy here is used to represent the input image texture. Matlab’s 

entropyfilt function was used to retain the dimensionality of the image by allowing for entropy 

to be applied as a mask.  Around each pixel in the image, the entropyfilt function returns the 

entropy of a 9x9 default neighborhood.  The formula for the entropy calculation in each 

neighborhood is: -sum(p.*log2(p)), where the value p is histogram counts from the Matlab 

histogramming function, imhist. 

Preprocessing of images, such as the application of light normalization, is essential when using 

thresholds, particularly when objects are not well separable from the background.  The output 

image computed by entropy filtration is highly dependent upon the area selected. For small 

neighborhoods, the local disturbances will result in weights that are sufficient enough to render 

the output image as too noisy.  Conversely, an excessively large neighborhood value will not 

retain details rendering the output image as blurred. Thus, the main issue to be considered in the 

filtration method is the selection of a neighborhood. The compromise between a noisy or blurry 

image is a common tradeoff for value selection. Matlab’s floor function rounds the output matrix 

elements to the nearest integer that is less than or equal to it. Entropy filtering floors the image to 

half the neighborhood’s size. Matlab’s strel (structural element class) can be used to define 

neighborhoods of many different shapes.  In this case, a strel object is created; the getnhood (get 

neighborhood) function is used to extract the neighborhood for that strel object. In contrast, the 

rangefilt function returns an array where each output pixel contains the range value, which is the 

maximum value − minimum value of a 3-by-3 neighborhood around the corresponding pixel in 

the input image. Like entropy filtering, the input can be of any dimension, but grayscale was 

chosen for this study. Also, like entropyfilt, rangefilt defines the center element of the 

neighborhood as the position at the midpoint of the neighborhood’s width (in both dimensions).   
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Matlab’s rangefilt function uses imdilate and imerode (morphological functions) to find the 

maximum and minimum values in a specified neighborhood.  In this study, this was achieved by 

implementing the padding behavior of these morphological functions to calculate the range 

through a strel object.  The neighborhood of values is extracted from the structuring element 

object's neighborhood property, similar to entropyfilt. 

5.1.3. Prewitt Operator 

After Entropy and Range preprocessing, the edge detection filter was applied. A variety of edge 

detection filters were surveyed to extract the bridge boundaries. These included the Sobel, Canny, 

Roberts, Laplacian of Gaussian, and Prewitt filters.  In general, edge detection filters detect edges 

using first derivatives, through a gradient calculation, or using second derivate, through 

Gaussian or zero-crossing detection methods.  In the Laplacian, Laplacian of Gaussian (LOG), 

and Gradient, edge detection is based on the derivative of the pixels of the original image (Sunaga 

2009).  The Prewitt, Sobel and Roberts operators are gradient-based edge detection methods.  

They employ two dimensional (2-D) linear filters to detect and process vertical edges, as well as 

horizontal edges separately.  This facilitates the approximation of first-order derivatives of the 

pixel values of the subject image.  In addition to being more computationally complex, Gaussian 

methods such as the Laplacian of Gaussians and Difference of Gaussians exhibit heightened noise 

sensitivity (Dim and Takamura 2013).  The Canny method integrates elements of both types by 

implementing a Gaussian filter to smooth noise and then a first order derivative to detect edges.  

The lack of feasible directional filtering was the main reason the canny filter was not chosen for 

this study. Although a direction can be applied to the gradient, the Gaussian smoothing phase 

does not retain directional resolution and separation, and it is more computationally complex 

than implementing a one-dimensional gradient filter such as the Prewitt (Prewitt 1970). On the 

other hand, the LoG method filters were dismissed due to their extremely low sensitivity. These 

edge detectors are in the second derivative family and look for more intense changes, that is, 

stronger edges, in the image through a second derivative calculation than simple first order 

classical gradient filters, like Sobel and Prewitt. Hence, simple gradient filters like the Sobel and 
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Prewitt were selected in this study. It was found that filtering with respect to the vertical direction 

was the most important design criterion for this phase of the study. Sobel and Prewitt were tested 

in the vertical directions and were found to be more effective than the Canny in enhancing vertical 

edges. It was found that the Prewitt had a better sensitivity than the Sobel due to the lower values 

in its kernel.  This could be an issue if there is much noise present in the image, but because 

horizontal noise is filtered out and vertical features are enhanced by Savitzky-Golay, and the 

Prewitt is preset to extract edges in the vertical direction, it is of more use to have a better 

sensitivity in this application. Because the main edges being detected in this study were large 

substantial signals, the Prewitt filter produces reasonably accurate results with lightweight 

computations. If detection of finer edges is needed, an edge detection filter in the Gaussian family 

could be chosen.  

Several edge detection algorithms were tested to evaluate their applicability to bridge pier 

images. Each was tested with thresholds of 0.1, 0.3 and 0.8. The Prewitt and Sobel were set in the 

vertical direction. The Laplacian of Gaussian filter did not operate at these high thresholds, so a 

lower 0.05 threshold and a default selection were shown to characterize its behavior. The Hough 

Space description of the peaks derived from these filters was included to prove their effectiveness. 

The Prewitt with a vertical direction and threshold of 0.3 was ultimately used for this study. 

5.1.4. Hough transform 

The Hough transform is used for the identification of lines, circles, ellipses and other shapes in 

an image.  This technique finds instances of objects categorized by a defined class-shape through 

a voting scheme in a parameter space (Hart 2009).  

Acoustic images were fed into the hough Matlab function to detect the presence of straight line 

segments.  This was done by finding the Standard Hough Transform (SHT) via the parametric 

representation of a line in Hough Space. The function returns 𝜌, the distance from the origin to 

the line along a vector perpendicular to the line, and 𝜃, the angle in degrees between the x-axis 

and this vector. The angle 𝜃 was set within a threshold of 15 degrees on either side from 90 

degrees to ensure that the lines of the image were vertical. The function can also return the 
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Standard Hough Transform, SHT.  SHT is a parameter space matrix whose rows and columns 

correspond to 𝜌 and 𝜃 values, respectively. This set of values was useful in practice as the input 

to detecting the peak Hough values, P. The houghpeaks function was used to extract the peak 

values of H. The peak H values represent the points where the curves intersect; H gives a distance 

and angle. This distance and angle describe the line which intersects the points being tested.  

In this study, the maximum number of peaks was set to 8 as a default to account for the greatest 

amount of line segments present in the image, with a threshold of 30% of the maximum value of 

H to define the peak transform magnitudes.  It was found that modifying this value greatly 

affected the results. It was essential to consider the size of the suppression neighborhood. The 

neighborhood around each peak that is set to zero after peak identification is called the suppression 

neighborhood.  The default value of the suppression neighborhood is the maximum value of H 

divided by 50.  Instances where this default lacked will be discussed in the results section. The 

algorithm was highly sensitive to changes in this value because it was the input to the houghlines 

function which ultimately yields the bridge width.  

Plotting and bridge width calculations  

The houghlines function accepts the Hough arguments, H, T, R, and P, discussed above. 

However, this function allows for error minimization in the Hough line plotting by accepting 

minimum length and gap margin arguments. Minimum length can ensure that the segments are 

likely to fall within a certain range.  This is useful to eliminate noise and image artifacts that may 

have been amplified during preprocessing. A concern with setting a minimum length at this 

phase of development is that the pier can be a small segment within the full image of the pier and 

foundation. Nonetheless, the algorithm first identifies the greater (longer) structure and then 

determines its identity. If this length does not have any segments above it, then it is a foundation 

or a pier. If both are present, then, the algorithm considers both.  Similarly, the fill gap capability 

of the houghlines function achieves error correcting by connecting small gaps between line 

segments that are likely to be the same structure. 
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Finally, it was found that the width calculation differed according to the type of image type 

detected. For instance, if the image contains both a bridge foundation and a pier, the algorithm 

requires a separate approach for extracting and plotting these values. There are two sets of widths 

and heights of interest in this case and must be distinguished through the distances and lengths 

of the Hough line segments.  The same identification decision needs to be made when both 

extracting and plotting the geometric features of the bridge. 

 Image processing algorithm step II: riverbed extraction 

The goal of this part of the algorithm was to extract the riverbed boundary from the rest of the 

image. This was done via texture segmentation primarily relying on entropy preprocessing, 

Gabor filtering, and k-means clustering. This part of the algorithm consisted mainly of Gabor 

filtering of the image to create a feature set that can be clustered (via k-means) to segment the 

textures present in the image. The components of the algorithm are shown in Figure 11, and are 

discussed next. 

 

Figure 11. components of Step 2 of the image processing algorithm. 

A classic approach to texture segmentation with Gabor filters was successful. It was found that 

applying a binarization in noisier images was more effective than plain entropy preprocessed 

images. The unique approach in this study was applying an entropy filter as a preprocessing 

method in Gabor filter feature extraction. Combined entropy and range filtering was not effective 

in the preprocessing. 

Statistical 
Preprocessing Gabor Filtering K-means 

Clustering
Extracted 

Riverbed Image
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5.2.1. Statistical preprocessing 

As in step one of the algorithm, statistics were applied to the image to prepare the image for edge 

extraction. This was part of the preprocessing phase. A variety of edge statistical analyses, such 

as variance and standard deviation were also considered, but yielded similar results to the 

entropy or range filtering techniques. At first, entropy and range were considered to enforce a 

symmetrically similar preprocessing design to the first part of the algorithm. However, this was 

not effective. The range filtering disordered the intensities of each pixel, which had the effect of 

incorrectly discriminating textures. Entropy alone proved to be the most effective in 

discriminating the textures across an accurate boundary in space. However, in noisier images, 

applying a binary threshold image was the most beneficial in extracting a preliminary bridge 

boundary. 

5.2.2. Gabor filtering 

The Gabor Filter is a linear edge detector used for edge detection and texture analysis. Gabor 

filters share similarities in frequency and orientation response to those of the human visual 

system (Malik and Perona 1990).  They are particularly suitable for discrimination and texture 

representation.  A two-dimensional Gabor filter is a Gaussian kernel function modulated by a 

sinusoidal plane wave in the spatial domain (Matlab 2017; Atherton 2011).  The Gabor filter 

impulse response is characterized by a sinusoidal wave, using a cosine in the real plane and a 

plane wave in two-dimensional space.  The sinusoidal is multiplied by a Gaussian function that 

acts as the kernel, or basis function. Thus, it is apparent that the Fourier transform of a Gabor 

filter's impulse response is defined as the convolution of the transformed harmonic function and 

the transformed Gaussian basis function (Clausi and Jernigan 2000). In addition, the Gabor filter 

has a real and an imaginary component demonstrating orthogonal directions (Jain and 

Farrokhnia 2000). 

As with the Fourier transform, a Gabor-filtered image is formed by superimposing a series of 

sinusoidal waves of different frequencies that are orientated in several directions. By examining 

pixels of the image, the effect of the transform can be physically realized.  The pixel value shows 
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the intensity of the sinusoidal wave, while its position shows the frequency and orientation of the 

wave (Malik and Perona 1990; Daugman 2017). The selection process of these waves is further 

discussed below. The Gabor transform acts as a bandpass filter cutting off the Fourier transform 

at certain frequencies to isolate specific information within the input image. 

Feature extraction is an important function of Gabor filters.  A set of Gabor filters with different 

frequencies and orientations can be used for extracting features of interest in an image. Based on 

the scanning sonar images chosen, segmentation is visually obvious because of the difference in 

texture between the consistent, repeating pattern of the bridge pier structure, and the irregular, 

rough texture of the seafloor (Reed and Hussong 1989). These expectations are an idealization; 

presence of debris, protective structures, and modifications to piers further complicate image 

segmentation. 

Before applying the Gabor filter, several parameters including the wavelength and orientation 

were determined.  The Gabor function used these parameters to create a Gabor filter bank with 

filters of the defined sinusoidal wavelength in pixels/cycle via the row and wavelength 

parameters, while orientation was defined in degrees normal to the sinusoidal plane wave. In 

implementation, these parameters were supplemented by minimum and maximum wavelengths, 

and the angle step size to prepare the bank of filters that are then applied to the image (Jain and 

Farrokhnia 1991). In addition, the spatial-frequency bandwidth and the aspect ratio of the 

Gaussian in the spatial domain were considered. The spatial-frequency bandwidth is the cutoff 

frequency of the filter response (Mehala and Dahaya 2008). This is realized when the frequency 

content in the input image diverges from the set frequency and is therefore defined as the inverse 

of the set wavelength (Lee 1996). Typical values for spatial-frequency bandwidth range from 0.5 

to 2.5 in the units of octaves (Mathworks 2017). The aspect ratio of the Gaussian in spatial domain 

is defined as a vector of numbers that expresses the Gaussian envelope as a ratio of its semi-major 

and semi-minor axes. In practice, this parameter controls the ellipticity of the Gaussian envelope. 

These values typically range from 0.23 to 0.92. For the current study, the default values of 1.0 and 

0.5, respectively, were found to be sufficient for the spatial frequency bandwidth and aspect ratio. 
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In general, the set of frequencies and orientations used to create a Gabor filter bank is designed 

to localize dissimilar, orthogonal, subsets of frequency and orientation in the input image. In this 

study, the orientation was sampled from 0 to 135 degrees in steps of 45 degrees and the 

wavelengths were sampled in increasing powers of two starting from K
√M

 up to the hypotenuse 

length of the input image. The angle step size was tested at a smaller value to enhance 

discrimination and resolution of boundaries in particularly noisy images. This did not have an 

impactful effect on the results, however, and the angle step size was kept at 45 degrees.  Similarly, 

minimizing the size of the wavelength step size also did not greatly impact the results. Therefore, 

the filter bank design by Jain and Farrokhnia (1991) was implemented in this study. 

Feature set post-processing and clustering 

The magnitude response of each of the Gabor filter bank components, also referred to as Gabor 

Energy, was a unique feature, or principle component of the input used in the algorithm to cluster 

and segment the textures within the image. However, post-processing is required before the 

Gabor magnitude responses can be used in clustering and classification. This post-processing 

includes Gaussian smoothing, which adds positional information to the feature set. This reshapes 

the feature set to the form expected by the k-means function, as well as normalizing the features 

to a common variance and mean. 

Each image of a Gabor magnitude contained local variations, even within regions of uniform 

texture. These local variations corrupt the segmentation process.  In terms of a bridge pier 

structure, presence of debris, irregular alterations to the pier structure, instrumentation, and 

scour protection measures within the image can alter the acoustic footprint of the texture. These 

areas would have darker or more irregular acoustic shadows cast upon them as a result of weaker 

returns to the transducer due to scattering of the incident beam at these irregular areas (Reed and 

Hussong 1989; Atherton 2011). This weaker signal appears as a shadow, or duller intensity, 

despite being the overall same texture as the rest of the bridge. 

Smoothing the Gabor magnitude features through a Gaussian low pass filter counteracts the 

variations due to the presence of the above-mentioned irregular features. Thus, a sigma that is 
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matched to the Gabor filter that extracted each feature was chosen. This is crucial since it is 

adaptable to the image and feature input (Lee 1996). Moreover, a smoothing term, K (which may 

be tuned), is determined to allow the algorithm greater freedom to control the quantity of 

smoothing applied to the Gabor magnitude responses. If the AUV detects the aftermath of a 

stormy condition, where the bridge structures could be obstructed by debris, this smoothing 

could retain the overall texture characterization of the bridge against the background and 

riverbed.  

Finally, when the Gabor feature sets were created, for texture classification, it was found to be of 

great use to add spatial location information as column (x) and row (y) coordinates. This 

additional mapping information adds another two dimensions to cluster the data with, and 

causes the classifier to group textures which are in the same spatial vicinity. Thus, the attributes 

being fed to the classifier include the Gabor Energies at various filter wavelengths and 

orientations to classify the true intensity characterizations of the texture, as well as spatial 

locations to enhance the accuracy in localization and discrimination of textures. A total of 26 

distinct features was stored in the variable featureSet in Matlab.  In terms of the feature space, 

each pixel in the image was represented as a distinct data point, within a plane representing each 

feature to which it relates (Mathworks 2017). In order to feed these features into a classifier, they 

were reshaped into a matrix form. The features were normalized to have a zero mean and exhibit 

unit variance. This post-processing was done in order to further enhance the differences and 

similarities within the feature set.  

Applying a Principle Components Analysis (PCA) is a method of confirming that there is 

sufficient variance in the Gabor feature data. This information is often plotted visually to quickly 

and intuitively assess the effectiveness of the Gabor features in classification and clustering. This 

was useful in developing the algorithm. For instance, with this PCA, it was realized that entropy 

alone was not sufficient to segment at least three textures (bridge structure, seafloor, and 

background), from the image. Mathematically, this implementation of PCA maps the data from 

a 26-dimension representation of each input pixel image into a 1-dimension intensity value for 
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each pixel. Having a distinctive variance among the data set is imperative in obtaining an accurate 

characterization of textures.  An example of one of the test cases applied is shown in Figure 12. 

 

Figure 12. PCA analysis of feature set (axes in pixels) applied to case 1. 

5.2.3. K-means clustering  

The textures were ultimately segmented using the K-Means clustering algorithm of Matlab’s 

built-in function. K-means clustering is a partitioning method based on the average squared 

distance between points in the same cluster (k++) (Ghaemi et al. 2009; Arthur and Vassilvitskii 

2006). Its accuracy has been improved with use over the years, resulting in k-means++ algorithm, 

discussed below. K-means analysis is a non-hierarchical cluster definition method driven-by an 

iterative process (Ortega et al. 2009; Mathworks 2017). That is, in every iteration of the algorithm, 

the value of each member in a cluster is reassessed. This reassessment and update process is 

founded on the current centroid of the clusters (Chen 2009). In general, this process is repeated 

until the chosen number of clusters is reached at an appropriate convergence-level (Peeples 2011; 

Kintigh and Ammerman 1982).  

The Matlab implementation partitions data into a predefined number of k, mutually exclusive, 

clusters. The value of k was predefined as the number of expected textures to be segmented in 

the image, which is three. By default, k-means uses the squared Euclidean distance measure and 
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the k-means ++ for cluster center initialization. K-means clustering operates on live observations 

to create one level of clusters. Older clustering techniques used hierarchical clustering, which 

operate on a decisional set of dissimilarity measures (Arthur and Sergei 2007; Kumar and Wasan 

2010). This difference is the reason that k-means clustering is often more appropriate in handling 

big data (Ferguson 1982). This includes large sets of images, and was thus selected as the classifier 

and clustering technique in this study. Based on the data set, the cluster centroids and the 

maximum number of iterations could be set to save computational resources; however, care must 

be taken to avoid inaccurate convergence. By default, the Matlab k-means function uses the k-

means++ algorithm to initialize cluster centers. Because the image data set was variable, the 

initialization of centroids is not predefined. Therefore, the more appropriate method was the 

kmeans++ algorithm, which was utilized in this study.  

The k-means++ algorithm extends k-means with a mathematically simple and randomized 

seeding technique to initialize centroid locations (Arthur 2007).  Even though this introduces an 

overhead in the initialization of the algorithm, it provides an important benefit, namely, reducing 

the probability of a bad initialization, which would lead to a bad clustering result. Thus, k-

means++ improves both the speed and the accuracy of k-means. 

The only prior information required in the algorithm are the number of texture blocks to be 

segmented in the image (Sorensen and Ludvigsen 2015). This is a limit to clustering algorithms 

in general and is a popular area of research in Machine Learning. In implementing the algorithm 

proposed in this study, this limitation could lead to error in the presence of debris at the pier-

riverbed interface. In general, the textures to be segmented were the bridge, the riverbed, and the 

background, for a value of k =3 clusters.  In the presence of debris, this would make the debris 

appear as a part of the riverbed. Normally, this would not be as issue because the smoothing 

process eliminates such noise from the extracted seafloor. However, if this debris fills a scour 

hole, the randomness of both the debris and the hole could make them appear as a texture, 

resulting in a large error in predicting scour hole depth. Based on the geometry and quality of the 

input image, the number of clusters was variably set to either 3 or 4. The riverbed segment was 
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extracted by storing it as its own image with a null, black, background. This segment was one of 

the inputs in Step 3, along with the bridge information extracted in Step 1.  

 Image processing algorithm step III: reconstruction through bridge scour model 

The reconstruction of the image consisted of integrating the key results from Steps one and two. 

Specifically, this included plotting the Hough lines to signify the bridge pier and, plotting a 

boundary curve correlating to the extracted riverbed, with minima and maxima easily localized 

and relatable to the Bridge. This information can be exported into the geographic information 

system databased developed as part of this study, and can be tagged to a specific bridge following 

an AUV mission. The flowchart of this part of the algorithm consisted of converting the riverbed 

image to a curve and plotting the bridge pier and foundation system. 

The algorithm first read in the boundaries segmented by the texture segmentation portion of this 

study. The boundary was then converted from a two-dimensional image to a one-dimensional 

signal representing the height of the riverbed. If a one-dimensional signal is desired as an output, 

then it should be acquired by a sensor that is made for that purpose, like a bathymetric sonar. 

However, acquiring two-dimensional images from a sonar includes more information about the 

environment as a nearly full documentation of the bridge condition. This allows research in high-

level environmental assessments, which is the aim of future work. 

In order to achieve the aforementioned conversion, an algorithm was developed to search the 

image matrix and find the areas where the image changed from low (0), or background, to high 

(1), or foreground, or the riverbed.  The image was first converted from grayscale to a binary 

image to emphasize boundaries. Then, nested for loops were used to iterate through the pixels 

until a change was detected. Once a change from low to high was detected, the pixel location was 

stored in a vector of length equal to the number of columns in the image and the algorithm 

continued its search over the image. The column indices were the independent variables. The row 

values ultimately became the dependent variables which were plotted over the image to show 

the variations in the riverbed in space. Subsequently, smoothing was applied using the Savitzky-
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Golay filter to remove local oscillations. Finally, the Hough line results from step one were simply 

plotted over the riverbed curve. These line segments were stored in matrix form.  

 Results 

The results of each step of the algorithm are presented in this section. The advantages, limitations, 

and challenges in each of the components of the algorithm are identified, along with outputs in 

each step. 

The Matlab implementation of the codes described in previous sections is not appropriate for run-

time usage with AUV missions. In practice, some of the analysis can be done offline after an AUV 

mission is completed. The ideal implementation allows for real-time decision making, in 

particular in recognizing and navigating around bridge piers in scour monitoring/assessment 

missions. For this purpose, the Nvidia Jetson TX1 platform was chosen. This is a development 

board based upon a Tegra processor with both ARM CPU cores and GPU cores. Low level access 

to the GPU cores for computation is through CUDA. An OpenCV port is provided by Nvidia, 

which accesses the GPU cores for parallel processing. 

Some of the computer vision algorithms developed in Matlab were directly available in OpenCV, 

but many others required custom development. These codes were developed as part of this study, 

and are provided in Appendix A. While the OpenCV library on the Jetson is tuned for GPU 

processing, future work can more completely leverage the performance enhancement possible 

with parallelization on GPUs for optimization of computing resources onboard the AUV. 

5.4.1. Step one results 

The goal of step one was to detect and extract the bridge pier features from an acoustic image. 

The main methods used were Savitzky-Golay filtering to reduce horizontal components and 

enhance vertical components of the image; specifically, these were the edges of the bridge pier. 

Next, the entropy and range filters were applied locally to these edges. Then, a Prewitt filter in 

the vertical direction was used to detect and specifically extract vertical edges. Finally, a Hough 

transform was used to gather and determine these edges as a set of true edges or Hough lines, as 
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a vertical feature set. The parameters used for Step 1 in processing of the images for the six bridge 

piers considered in this study are shown in Table 1.  

Table 1. Summary of parameters set for step one of the image processing algorithm. 

Case 

Image 
Width x 
Height 
(pixels) 

Savitzky-Golay 
Filter Window 

Size (pixels) 

Number of Set 
Hough Peaks 

Minimum 
Size of Peak 

(pixels) 

Fill Gap 
Correction 

(pixels) 

Prewitt 
Filter 

Threshold 

1 710 x 380 31 2 150 70 0.3 

2 310 x 180 11 6 75 90 0.3 

3 410 x 130 11 4 70 70 0.3 

4 570 x 270 11 8 175 70 0.3 

5 520 x 170 11 2 110 10 0.3 

6 1000 x 240 11 2 100 70 0.3 

 

A great level of variation was not needed for the Savitzky-Golay filtering phase of the algorithm. 

It was found that over-smoothing eliminated too many key frequency components, or worse, 

created false positive results. In most cases, a Savitzky-Golay filter order of 3 and a window size 

of about 5-10% of the image were sufficient. As mentioned in the Algorithm, a lower filter order 

and a higher window size have a greater effect on smoothing. The filter design was verified 

experimentally.  In cases where there were more bridge components, such as case two, case three, 

and case four, less smoothing was needed to preserve target discrimination for each of these 

edges. Hence, a higher filter order of 3 was used. Furthermore, it was found that noise had the 

greatest effect on Savitzky-Golay filter design. The image used in case one had less background 

noise reduction applied to it compared to the other images used in the study, and, therefore, 

needed a wider window size of smoothing applied to it than the other cases. Nonetheless, a 

scalable filter design of a conservative 5% of height Window Size and third order was found to 

be scalable in this study with respect to image height and noise level. Parameters used for the 

filtering are shown in Table 2. 
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Table 2. Entropy-range results: Savitzky-Golay filter rules. 

Case Savitzky-Golay Filter 
Window Size (pixels) 

Image Height 
(pixels) 

Window Size to 
Image Height (%) 

Savitzky-Golay 
Filter Order 

1 31 380 8.16% 3 

2 11 180 6.11% 3 

3 11 130 8.46% 3 

4 11 270 4.07% 3 

5 11 170 6.47% 3 

6 11 240 4.58% 3 

 

The main settings and variables that were modified in this step were the number of Hough peaks 

to detect, the minimum size of a peak and the fill gap correction. Table 3 shows how the rule set 

was defined for each of these variables. The number of Hough peaks was set to match the number 

of true bridge edges in each case. Because the minimum size of peak and fill gap correction were 

in terms of pixels, it was reasonable to define these in terms of percentage to the full image height. 

While the minimum size of peak percentage was roughly 50% of the image height, the percentage 

of the fill gap correction to the image height varied with each case. This indicates that this 

correction is not related to the image size. Instead, a requirement for a lower fill gap correction is 

related to greater image noise. This is because image artifacts could be misread as new or 

extensions to the true bridge edges. In addition, the similarity in textures of the bridge to the 

seafloor could also create a false peak if the fill gap correction was too high. Hence, a strong noise 

reduction and vertical edge enhancement phase is crucial to step 1.  

The fill gap correction was set to be proportional to the noise level. Although the Hough ceiling 

parameter could have also been altered at each step, it was found that maintaining a constant 0.3 

ceiling was sufficient for the examples considered in this study. 
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Table 3. Hough peaks and line settings 

Case 
Image 
Height 
(pixels) 

Number of 
Set Hough 

Peaks 

Minimum 
Size of Peak 

(pixels) 

Minimum 
Peak/Image 
Height (%) 

Fill Gap 
Correction 

(pixels) 

Fill Gap 
Correction/Image 

Height (%) 

1 380 2 150 40% 70 47% 

2 180 4 75 42% 90 50% 

3 130 4 70 65% 70 65% 

4 270 6 175 65% 70 26% 

5 170 2 110 65% 10 6% 

6 240 2 100 42% 70 29% 
 

Table 4 lists the effectiveness of the fixed settings described in Table 3. It can be seen that although 

not all peaks were identified, as can be seen in the results of cases three and four, the detected 

peaks were only true peaks. That is, although not all six true peaks were identified, the two peaks 

that were not identified were incorrectly detected as a more dominant true peak. This signifies 

that the algorithm did not produce a false result. Rather, the algorithm showed a weakness to 

peaks that were under a certain percentage of the full image height. This can be directly 

incorporated into an automatic scour image analysis algorithm in order to avoid detection of false 

peaks. 

Table 4. Entropy results: Hough peaks in the examples considered 

Case Image 
Width 
(pixels) 

Image 
Height 
(pixels) 

#of True 
Peaks in 

Case 

# of 
Matches 
to Truth 

# of 
False 
Peaks 

Correct 
Matches 

(%) 

Peak Height 
Accuracy (%) 

Horizontal 
Spatial 

Accuracy (%) 

1 710 380 2 2 0 100 96% 98% 

2 310 180 4 4 0 100 100% 100% 

3 410 130 4 2 0 79% 85% 83% 

4 570 270 6 4 0 94% 97% 100% 

5 520 170 2 2 0 100 100% 100% 

6 1000 240 2 2 0 100 100% 100% 
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Taking this under consideration the percent correctness measures were weighted to reflect that 

the algorithm did not identify an incorrect peak, but, doubly represented a true instance. These 

weights were found by taking a ratio of the length of the missed vertical peak to the total height 

of the image. Next, the sum of these ratios was found. Then, the ratio of the missed peaks to the 

total number of peaks was found. Finally, the sum of height ratios was multiplied by the peak 

number ratio. This was the total percent in the detection algorithm per image. 

As an example, the missed peaks for case three were:  25 pixels and 30 pixels with an image height 

of 130 pixels, therefore,  

NO 𝟐𝟓
𝟏𝟑𝟎
R	+ O 𝟑𝟎

𝟏𝟑𝟎
RS × 𝟏𝟎𝟎 = 	𝟒𝟐%	𝑾𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈	  (9) 

Applying this correction,  

O𝟐	𝑴𝒊𝒔𝒔𝒆𝒅	𝑷𝒆𝒂𝒌𝒔	
𝟒	𝑻𝒐𝒕𝒂𝒍	𝑷𝒆𝒂𝒌𝒔	

= 𝟓𝟎.𝟎%	𝑬𝒓𝒓𝒐𝒓R × 𝟎. 𝟒𝟐 = 𝟐𝟏%	𝑬𝒓𝒓𝒐𝒓  (10) 

Also, for case four, the missed peaks were:  25 pixels and 30 pixels with an image height of 270 

pixels, therefore, 

NO 𝟐𝟓
𝟐𝟕𝟎
R	+ O 𝟐𝟓

𝟐𝟕𝟎
RS	× 𝟏𝟎𝟎 = 	𝟏𝟖.𝟓%	𝑾𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈  (11) 

Applying the correction,  

O𝟐	𝑴𝒊𝒔𝒔𝒆𝒅	𝑷𝒆𝒂𝒌𝒔	
𝟔	𝑻𝒐𝒕𝒂𝒍	𝑷𝒆𝒂𝒌𝒔	

= 𝟑𝟑.𝟑%	𝑬𝒓𝒓𝒐𝒓R × 𝟎. 𝟏𝟖𝟓 = 𝟔.𝟏𝟕%	𝑬𝒓𝒓𝒐𝒓  (12) 

These results indicate that if a pier and foundation are present in an image, a reasonable aspect 

ratio must be preserved to accurately depict all components of the bridge. This is seen through 

case three and case four, where the peaks of the bridge that were not detected were missed but, 

were not false. Cases two and three are reasonably comparable in their target, their seafloor 

curves seemingly being the main difference in the images. However, the bridge detection 

algorithm in case two succeeds where case three does not.  Each image has four Hough peaks, 

and case two detects them all, while case three does not. This difference was found to be 
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attributed to the aspect ratio of the image. For all components of the bridge to be detected, they 

must be nearly 25% of the height of the image. In case three, the smaller peaks represented the 

bridge pier. They were 25 and 30 pixels each over a 130-pixel height, yielding an average peak to 

height ratio of 21 percent. In case two, the smaller peaks represented the bridge foundation. They 

were 50 and 40 pixels each over a 180-pixel height, yielding an average peak to height ratio of 

exactly 25 percent.  

It was found that the horizontal placement of the piers as detected by the algorithm also varied. 

These errors were for the most part negligible. Nonetheless, it was found that images with greater 

noise in the background were more likely to display errors in the horizontal spatial accuracy of 

the image. Reducing the horizontal noise and enhancing the features was found to be key in 

eliminating these errors. 

The conclusions from the results gathered in Step One indicate that quality background noise 

removal was needed for accurate detection of edges while excess data reduction is needed to 

enhance edges.  Smoothing was extremely significant.  Smoothing was used in this phase to not 

only eliminate background noise but also to enhance the bridge edges, which the signals of 

interest.  Hence, a balance between eliminating background noise and enhancing edges was key 

to this study. Over-smoothing led to noise being detected as pier edges (false positives) and 

under-smoothing led to both pier edges to be missed (false negatives) and background noise to 

be detected (false positives). The metrics for success in this phase of the algorithm were first and 

foremost the column accuracy of the line segments on top of the bridge widths and the length of 

the detected segments. It was found that a suitable solution was using a cascade of direction-

sensitive filters. Hence, globally applied filters were replaced with the Savitzky-Golay filter for 

its more tunable input arguments as well as directional smoothing and the Prewitt direction-

sensitive edge detector. Results of the bridge pier identification are graphically shown in Figure 

13 and Figure 14, where the automatically detected vertical boundaries of the bridge piers are 

shown using lines. 
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Figure 13. Automatic detection of vertical pier components in cases 1-3. 
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Figure 14. Automatic detection of vertical pier components in cases 4-6. 

5.4.2. Step two results 

The goal of Step 2 was to extract the seafloor from the rest of the image. This was successfully 

achieved via a texture segmentation approach. This process is inherently application-specific. 

However, entropy alone as a preprocessing technique was generally useful in most cases. It was 
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found that applying a binary threshold also improved partitioning. After preprocessing, a Gabor 

Filter bank was used to create an image feature set that was then applied as the input to a 

kmeans++ clustering algorithm. The clustering algorithm segmented textures based on their 

Gabor Filter responses and pixel locations. As the seafloor texture is more random than the bridge 

or background of the image, a texture segmentation technique was successful in most cases. 

The texture algorithm remained constant in the majority of the bridges studied, with entropy 

preprocessing applied to a k-means cluster solution of k=3 clusters measured through Euclidean 

distance. However, in cases two, four, and five, the clustering solution needed to be set to 4. 

Results of the segmentation techniques applied to the six bridge pier cases are shown in Figure 

15. 

5.4.3. Step three results 

In this final step, the results of step 1 and step 2 were combined to a displayable format.  There 

were a few key design challenges in this part of the algorithm. As previously discussed, for each 

case, the segmented boundaries were binarized to emphasize their edges for accurate 

discrimination of the boundary, as can be seen in Figure 16 for case 1. Challenges included 

selecting an accurate yet, effective smoothing filter. The Savitzky-Golay proved to be the most 

appropriate as it fits a polynomial to set of data points locally without over smoothing. The 

process of creating a boundary curve meant creating vector of discrete points to represent the 

edge variations of the seafloor boundary. Application of a smoothing filter was found to be 

effective in these cases. This can be seen in Figures 17 and 18, which show the effect of smoothing 

at different orders and window sizes of the function on the resulting edge detection at the 

riverbed. Ultimately, a frame length of 10% of the image width and order of 3 were chosen 

because they had the most median effects and computational complexity to the image.  
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Figure 15. Results of segmentation techniques applied to separate the river bed from the bridge pier 

for cases 1 through 6. 
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Figure 16. Thresholding applied for enhancement of edge detection applied to case 1. 

Results of the image processing applied to the six cases considered in this study are presented in 

Figure 19 and Figure 20. The inaccuracies evident in some of the results are due to several factors, 

for which solutions were devised, but the raw processing was presented to illustrate the 

shortcomings in the original algorithms. For example, it can be seen that because of poor signal 

gradients in Case four, a false peak was detected on the right side of the pier. Further smoothing 

eliminated this and similar false peaks.  

In case five, the poor quality of the image resulted in loss of important image signals during the 

thresholding process. In such cases, the upstream and downstream side of the image can be used 

to estimate the riverbed. Adopting larger window sizes in the smoothing algorithm can eliminate 

the majority of the resulting false peaks. 
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Figure 17. Savitzky-Golay filter at constant frame length and variable orders applied to case 1. 

Figure 18. Savitzky-Golay filter at variable frame lengths and constant order of 3 applied to case 1. 
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Figure 19. Depiction of bridge pier and riverbed in cases 1-3. 
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Figure 20. Depiction of bridge pier and riverbed in cases 4-6. 
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6. PATH FINDING 

The path finding algorithm was developed using MOOS-IvP (Benjamin 2013), a multi-objective 

optimization system based on interval programming (MOOS: Mission Oriented Operating Suite). 

MOOS is an open source suite designed path simulation for underwater vehicles. The MOOS-IvP 

software was specifically designed to handle operations with AUVs and similar watercraft. The 

system is driven by three different design philosophies: the backseat driver design philosophy, 

the publish-subscribe design philosophy, and the behavior-based control design philosophy. The 

backseat driver design philosophy allows for the distinction between vehicle control and vehicle 

autonomy. Vehicle control is run on the main vehicle computer while vehicle autonomy is run on 

a separate payload computer. This design decouples the autonomy system from a vehicle’s 

hardware. A navigation and control system is provided that is capable of streaming vehicle 

position to the main computer. The system also receives a stream of autonomy decisions. How 

the vehicle navigates is unspecified to the autonomy system running in the payload computer.  

The publish-subscribe middleware design philosophy allows processes to communicate with 

each other through a database called MOOSDB, or MOOS Database. Messages are available in a 

variable-value pair, such as NAV SPEED. Parameters such as speed, heading, depth, and mode 

are available through the MOOSDB. This accessibility makes applications largely independent, 

and allows for the addition or removal of behaviors. Editing existing applications is also 

simplified as a result of this approach. The behavior-based control design philosophy allows for 

the creation of behaviors. Behaviors are software modules that control an aspect of vehicle 

autonomy. The helm implements each behavior and allows for the configuration of a set of 

missions (Benjamin et al. 2009). The helm also contains mode spaces that determine which 

behaviors are active. When multiple behaviors are active, the IvP solver reconciles the behaviors. 

An example of AUV simulation using MOOS-IvP is shown in Figure 21. 
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Figure 21. Example of navigation simulation in MOOS. 

Each mission in the MOOS simulations is comprised of behaviors that are integrated into the 

helm system. They contain two C++ files, two C header files, a .bhv file, and a .moos file. The two 

C++ files contain the code for the behaviors and the C header files correspond to the C++ files. The 

.bhv file is where the specifics of the behaviors are set, such as initial location, speed, mode, depth, 

and other parameters specific to each behavior. The .moos file contains information about 

applications such as pHelm IvP, uSim Marine, and uHelm Scope. The behaviors used to create 

the bridge scour navigation mission were behaviors that were adapted from existing behaviors 

contained in the MOOS-IvP system. The behaviors used were Simple Waypoint, Avoid Obstale, 

Survey, Constant Depth, Constant Speed, and Station Keep. Avoid Obstacle was renamed Object 

Detect and Survey was renamed Loitering to reflect their new functionalities. The components of 

simulated AUV missions are described next. 

Navigation algorithm: This simulation is run through deploy option in the software. When the 

AUV is deployed, Simple Waypoint is activated. When the survey button is pressed, Object Detect 

is activated. The AUV is aware of its first waypoint, but it detects that there is an object present 

and moves toward it. 
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The Object Detect behavior prevents the AUV from colliding with objects present in the water. 

The white line visible in Figure 21 is a track line that shows the AUV’s path. Additionally, the 

dotted line around the object represents a buffer zone which the AUV will not cross. When it 

reaches the object, the AUV switches to the Loitering behavior and begins its scanning pattern 

around the object. This pattern is characterized by decreased speed and implementation of the 

Station Keep behavior. The decreased speed allows a sonar to scan the pier and riverbed for signs 

of scour. The Station Keep behavior enables the AUV to stop at each side of the pier and shift its 

position and attitude so it can scan effectively. The AUV makes one pass around the object in this 

fashion. Once this pattern is completed, the AUV continues to the original waypoint and the 

simulation is finished. 

Mode hierarchy: Each mission has its own mode hierarchy. Modes dictate the state the AUV is 

in and can potentially allow an AUV to dynamically switch between behaviors. Examples of 

modes that are generally used in behaviors are ACTIVE, INACTIVE, DEPLOY, and RETURN. A 

new mode was created for this mission with the intent of detecting bridge scour. The mode, 

named NAV BSA MODE, has several states that it can switch between. In this simulation, the 

AUV begins in the IDLE state. Once it is deployed, the AUV switches to the ACTIVE mode. 

Simple Waypoint and Object Detect are initialized to begin when the mode is ACTIVE. A state 

diagram depicting the mode hierarchy is shown in Figure 22.  

NAV BSA MODE is initialized to SCOUT which indicates the Object Detect behavior is engaged 

and the AUV is actively searching for objects in the water as seen in Figure 23. Once it detects an 

object, the AUV will move towards it until it reaches the buffer zone around the object. When it 

reaches the buffer, the mode will switch to SENSE as seen in Figure 24. In the SENSE mode, the 

AUV will begin the scour detection pattern around the base of the pier. After the AUV has made 

one pass around the object, NAV BSA MODE switches from SENSE mode to SKEEP mode, as 

shown in Figure 25. In the SKEEP mode, the Station Keep behavior is active. Once it has 

completed all Station Keep points, the AUV will continue to the original waypoint. The key to the 

AUV’s autonomy is mode switching. Through these algorithms, anew method of mode switching 
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was developed in this study that gives the AUV more decision-making power and brings the 

mission closer to full autonomy. The implementation of these algorithms is described next. 

 

Figure 22. Mode hierarchy in the simulated AUV navigation. 

 

Figure 23. Snapshot of SCOUT Initialization in the simulated AUV navigation. 
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Figure 24. Snapshot of a change to the SENSE mode in the simulated AUV navigation. 

 

Figure 25. Snapshot of a change to the SKEEP mode in the simulated AUV navigation. 

Implementation of modes: Modes were set in the .bhv file of each behavior. Modes were either 

set to ACTIVE or DEPLOY so the behaviors began running as soon as the simulation started or 

they were initialized using the onscreen buttons. This type of mode switching is inefficient and 
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contrary to the types of autonomous decisions the AUV will need to make when surveying for 

bridge scour. 

A new method of mode switching was developed to remedy the above-stated shortcoming. A 

new variable named m BSA MODE was created that can be added to the MOOSDB publish-

subscribe database as seen in Figure 26. Each behavior that requires information about this 

variable can find it by subscribing to the helm, as shown in Figure 27. The new variable is 

initialized to ACTIVE. When it is published to the MOOSDB, it is given the name NAV BSA 

MODE. When the AUV reaches the buffer zone, the mode changes to SENSE. SENSE engages 

two more behaviors that were previously idle, Constant Speed and Station Keep. Constant Speed 

subscribes to the MOOSDB for information about the variable m BSA MODE, so when the mode 

switches, Constant Speed is engaged and the speed decreases. Similarly, the first instance of 

Station Keep is engaged on SENSE mode. When the AUV completes its first Station Keep 

waypoint, the mode is again switched. The new mode, SKEEP, activates three more Station Keep 

points. When the AUV reaches the object and switches to SENSE mode, the AUV will also dive 

to a lower depth. This new method of mode switching is caused by the AUV reacting to stimuli 

in its environment. This method is more representative of the decisions the AUV will have to 

make when completing a mission in real time. The described implementation therefore efficiently 

simulates autonomous missions of the AUV to investigate bridge pier scour.  

 

Figure 26. New variable created in MOOS-IvP for improved efficiency in AUV decision-making. 
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Figure 27. Addition of the variable described in Figure 26 to the Helm. 

 

7. GIS-BASED SCOUR RISK ASSESSMENT FOR PRIORITIZATION OF SCOUR 

MONITORING  

A risk assessment methodology was implemented in this study to prioritize bridges for scour 

monitoring using the AUV. Once the AUV reaches the deployment stage, the risk assessment 

described in this section can be used to identify bridges with the highest risk, in dollar amount. 

The risk assessment methodology adopted was a geographic information system (GIS)-based 

implementation of the HYRISK (Stein and Sedmera 2006) model for scour failure risk assessment. 

The GIS-based risk assessment tool can be integrated with data collected by the AUV, as proposed 

in Figure 28, to update scour risk, particularly following high storm events. In the immediate 

aftermath of such events, often limited state and local resources need to be prioritized to ensure 

safety of existing bridge infrastructure. AUVs can be employed to rapidly provide data required 

for such prioritization efforts. The GIS data platform presented herein will allow immediate and 

automatic updating of gathered data, and can facilitate complex planning and decision-making 

processes by incorporating all available data into spatially distributed maps of bridges within the 

state jurisdiction. Risk maps can automatically prioritize deployment of further monitoring 

programs as well as scour countermeasures. The developed platform is outlined in the following 

sections. 
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Figure 28. Flowchart for implementation of proposed scour monitoring program. 

 Development of a GIS data platform for scour risk assessment 

The risk assessment method employed in this study was the HYRISK model developed by 

Pearson et al. (2002) with modifications by Stein and Sedmera (2006) and Khelifa et al. (2013), as 

well as other modifications to accommodate available data for New York State. Since scour 

monitoring is often administered by state and local officials, the implementation presented herein 

can be emulated for other states based on available data. It is important to note that the HYRISK 

model does not include actual measurement of scour hole depth for bridges. Instead, it relies on 

Collect data required for risk 
assessment using HYRISK model

Construct GIS platform 
and populate with bridge 

data

Compute scour failure 
risk using HYRISK 

model

Present map of high 
priority bridges based on 

scour failure risk

Deploy AUV for inspection of bridges 
with high risk of scour failure

Analyze data AUV sonar data 
(manual and automatic)

Evaluate bridge pier foundation for 
geotechnical limit states 

Update GIS database 
information and recalculate 

scour failure risk 

Scour failure risk 
increased?

DEVELOPMENT OF GIS-
BASED HYRISK PLATFORM

AUV-ENABLED GIS-BASED 
SCOUR MONITORING PROGRAM

Flag bridge for 
periodic future 

inspection

Flag bridge for immediate action 
(install mitigation measures, 

close, etc.)

Archive bridge 
inspection data in 

GIS model for future 
reference

Transfer data to 
server wirelessly 

Reconstruct 
2D images 
from sonar 

data 

Apply digital image analysis 
methods to automatically 

measure in situ scour hole depth 

Use look-up tables to 
convert processed 
data to HYRISK 

model input

Use HYRISK look-up 
tables to update 

bridge data based on 
observed scour 

conditions

Yes, but 
not critical

No

Yes, critical



 58 

auxiliary related information to compute a probability of failure. It then associates a cost with a 

bridge failure. The product of the probability of failure and cost of failure, along with adjustment 

factors, define risk of scour failure for a bridge (Stein et al. 1999; Pearson et al. 2002; Stein and 

Sedmera 2006). The model is therefore a risk ranking system for scour failure. The HYRISK model 

can be expressed in mathematical form as: 

Risk = (Risk Adjustment Factors) × (Probability of Failure) × (Cost of Failure) (13) 
 

The model quantifies the probability of failure by statistical evaluation of historical data for 

bridges across the united states. The probability of failure is numerically mapped to (1) the 

likelihood that a given storm event will cause flooding and overtopping of the bridge, or the 

overtopping frequency, and (2) the vulnerability of a given bridge to scouring of its piers. In order 

to quantify the probability of failure, these two parameters need to be inferred from NBI data. 

Cost of failure is quantified by summing the various costs associated with the failure of a bridge 

in service, as described in the next sections. 

The data required for GIS implementation of the modified HYRISK model were collected from a 

number of different sources. The main source for bridge data was the FHWA (FHWA 1996) 

National Bridge Inventory (NBI), which is a database of information on all the bridges in the 

United States. The database stores numeric data on the bridges such as bridge geographical 

location, dimensions, structural information, use level, traffic capacity, and channel conditions, 

among others. The database uses a unique classification index that ranks certain bridge properties 

such as scour vulnerability and channel protection based on a 9-0 scale with 9 assigned to the best 

condition and 0 assigned to the poorest condition (the letter N is assigned if a given classification 

does not apply to a bridge) (FHWA 1996). The HYRISK model uses the NBI data to create 

correlations between a given bridge’s available data to various unmeasurable information, 

relying on statistics to adequately determine probabilities. 
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7.1.1. Probability of failure 

The overtopping frequency is related to two NBI items: functional class (NBI item 26) and 

Waterway adequacy (NBI item 71). Functional class refers to the type of roadway that the bridge 

supports and is a function of the location of the bridge and correlates to factors such as the ADT 

and the travel speed along the roadway. Waterway adequacy appraises the waterway opening 

with respect to flow conditions under the bridge, and is ranked from zero through nine. The 

resulting overtopping frequency is categorized into five groups as never (N), remote (R), slight 

(S), occasional (O), and frequent (F) overtopping. For example, an interstate highway with a water 

adequacy number of 9 (best waterway conditions under bridge) results in an overtopping 

frequency rating of remote. Overtopping frequency can therefore be programmed to be 

computed for each bridge using the aforementioned parameters.  

Vulnerability is a measure of how resilient a bridge is against scouring. The parameter has a rank 

of zero through nine for each bridge in the HYRISK model. The two NBI items used to quantify 

vulnerability are channel protection (NBI item 61) and substructure condition (NBI item 60). 

Channel protection describes the nature and quality of protective measures in the riverbed and 

bridge pier against scouring due to water flow. Elements such as stream stability and the 

condition of the channel, riprap, slope protection, or stream control devices are quantified into a 

channel protection rank (0 through 9). The substructure condition describes the condition of the 

pier, piles, or other types of support or foundation. As expected, a channel or substructure in 

worse condition will result in a more scour vulnerable foundation. For example, according to the 

HYRISK model, a bridge with a substructure condition rank of 9 and a channel protection rank 

of 9 also has a vulnerability of 9. Vulnerability can therefore also be programmed to be computed 

for each bridge using NBI items 60 and 61. 

Once the overtopping frequency and vulnerability factors have been quantified for a given 

bridge, its probability of scour failure can be determined using a mapping table, as shown in 

Table 5. The table presented by Stein et al. (2006) based on statistical analysis of scour failure data, 

with minor subsequent adjustments by Khelifa et al. (2013). 
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Table 5: Probability of failure based on overtopping frequency and scour vulnerability (after Stein 
and Sedmera 2006, with modifications by Khelifa et al. 2013). 

  Overtopping Frequency 

  Remote Slight Occasional Frequent 

Sc
ou

r V
ul

ne
ra

bi
lit

y 

0 1 1 1 1 

1 0.01 0.01 0.01 0.01 

2 0.005 0.006 0.008 0.009 

3 0.0011 .0013 0.0016 0.002 

4 0.0004 0.0005 0.0006 0.0007 

5 0.0003 0.0004 0.0005 0.0006 

6 0.00018 0.00025 0.0004 0.0005 

7 0.00018 0.00025 0.0004 0.0005 

8 0.000004 0.000005 0.00002 0.00004 

9 0.0000025 0.000003 0.000004 0.000007 

N 0 0 0 0 

 

7.1.2. Cost of failure 

The cost associated with failure of a bridge due to scouring is the sum of four costs: cost of loss of 

life, rebuilding cost, running cost, and time loss cost, described next. 

Rebuilding cost: The rebuilding cost is the cost involved in rebuilding the bridge after failure. 

This function of the risk can be determined using Eq. (14) and parameters developed from the 

HYRISK model, which computes running cost as  

Rebuilding Cost = C1×e×W×L (14) 

where C1 is the cost associated with reconstructing the bridge (in units of $/ft2), e is an early 

replacement cost multiplier, W is the width of the bridge (NBI Item 52, in units of ft), and L is the 

length of the bridge (NBI Item 49, in units of ft). The early replacement cost is a function of average 

daily traffic (NBI item 29) and ranges between one and two as per Stein and Sedmera (2006). 
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The reconstruction costs (C1) were determined for New York State bridges using preliminary cost 

estimating worksheets for new and replacement bridges published by the New York Department 

of Transportation (NYDOT). The worksheet contains a variety of information on each contract 

such as the cost estimate and includes the structure and superstructure type. Several adjustments 

were made to the worksheet values to ensure reasonable estimates for reconstruction costs. For 

example, the values in the worksheet were reduced, based on engineering judgement and 

experience, for continuous span concrete bridges, as the worksheet yielded excessively high 

values. Moreover, the NBI data includes older bridges with material types not listed in the 

worksheet, including timber, masonry, and aluminum. It was assumed in these cases that if a 

bridge were to fail, the new design would be according to local practice. Therefore, reconstruction 

costs were computed for materials listed in Table 6. For reference, reconstruction costs reported 

by Stein and Sedmera (2006) are also listed in Table 6.  

Table 6. Bridge reconstruction cost 

NBI 
Value Material Stein and Sedmera 

(2006) cost ($/ft2) 
Cost used in this study 

for New York ($/ft2) 

1 Concrete 50-65 515 
2 Concrete, continuous span 60-80 515 
3 Steel 62-75 460 
4 Steel, continuous span 70-90  460 
5 Prestressed 50-70 328 
6 Prestressed, continuous span 65-110 328 
7 Wood N/A 515 
8 Masonry N/A 515 
9 Aluminum, Iron N/A 460 
0 Other N/A 515 

 

Running cost: The running cost can be defined as the cost associated with keeping a constant 

vehicular flow rate. It is calculated by splitting vehicular traffic into passenger vehicles and 

trucks, and estimating running cost for alternative routes while the bridge is being reconstructed. 

Running cost can be written as: 
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 (15) 

where C2 and C3 are cost of running passenger vehicles and trucks, respectively, A is the length 

of the detour (NBI Item 19), A is the average daily vehicular traffic (NBI Item 29), T is the average 

daily truck traffic (NBI Item 109), and d is the duration of the detour. An average vehicular cost, 

C2, of $0.535/mile was used based on analysis of the Internal Revenue Service data, and the value 

of C3 was chosen as $2.12/mile based on data obtained from DAT ReteReview, which allows users 

to obtain current contract freight rates across the country3. 

The duration of the detour (d) is not a factor that can be found through the NBI data. Pearson et 

al. (2002) developed a modified version of the HYRISK model that estimates the average time that 

a motorist may spend being detoured. The product of this estimate and the ADT of the bridge 

yields the total time spent on the detour. 

Time loss cost: The time loss cost in the cost equation can be summarized as the cost associated 

with the time lost from a bridge failure and a driver being forced into an alternative, longer route. 

Unlike the running cost which is a value based on the vehicle itself, the time loss cost is based 

upon the monetary value of the driver’s time. Similar to the running cost equation, the time loss 

cost equation uses two constants, C4 and C5, to represent the value of time for passenger car and 

truck drivers, respectively. The equation can be written as follows: 

 (16) 

where S is the average detour speed, O is the occupancy rate for a passenger car, and the rest of 

the parameters are similar to Eq. (15). The occupancy rate for a passenger car was taken from the 

National Household Travel Survey to be 1.55 and the detour speed to be 40 mph. Based on 

                                                   
3  https://www.dat.com/freight-rates 
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analysis of New York State Department of Labor data, an average value of time of $12.82/hour 

was selected.  

Cost of life: The final term in the total cost equation is the cost of life, which represents any legal 

cost or compensation associated with a life lost due to a bridge failure. This cost is the product of 

the cost of each life lost, C6, and the expected number of deaths, X. The expected number of deaths 

was estimated using the equation proposed by Khelifa et al. (2013), as the product of three terms: 

the occupancy rate for a bridge, O, the time to clear a bridge, TC, and the arrival rate of the bridge, 

AR. The time to clear the bridge was computed using the length of the bridge (NBI item 49) and 

the average speed limits in New York State4. Speed limits were correlated to the functional 

classification of bridges (NBI item 26) to reflect varying speed limit across different roads. The 

arrival rate is the ADT for a given bridge.  

Risk adjustment factors: The HYRISK model incorporated a risk adjustment factor, K, to account 

for uncertainties resulting from unknown bridges. Accordingly, K=K1×K2, where K1 is a factor 

relating to the length of the bridge, and K2 is the foundation adjustment factor, ranging from 0.2 

for massive rock foundations and one for unknown foundations. In the present study, the 

uncertainties in the bridge foundation were ignored, with a value of one assigned for both K1 and 

K2. 

 Risk calculation for New York State bridges 

The first step in GIS implementation of the HYRISK model is to collect available data for New 

York State bridges from NBI. The data was downloaded from FHWA into a spreadsheet for 

further analysis. Not all the available data from NBI is needed in the HYRISK model. Bridges 

which did not have scour susceptibility were eliminated from the dataset. A list of bridge 

deletions used in this study is presented in Table 7. It can be seen that culverts, interchanges, 

bicycle bridges, and bridges for which NBI has determined scour susceptibility is not applicable 

were removed from the database. Of the 17,461 total bridges in the 2016 NBI database, a total of 

                                                   
4 http://www.speed-limits.com/newyork.htm 
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7,261 bridges were removed, leaving 10,200 bridges for risk analysis and implementation in the 

GIS database. 

Table 7. A table sowing list of bridges deleted from the dataset for this study 

Bridge 
removed 

NBI item and 
definition 

Reason for deletion Notes 

Culvert 
60: Bridge 

substructure 

Not susceptible to the type 
of scour that is the focus of 
this study, i.e., local scour. 

Bridges with a code of N in item 
60 correspond to culverts. 

Interchange 
42A: Type of service 

42B: Type of structure 
under bridge 

Water not flowing under 
bridge 

Bridges with code 6 for item 42A 
are interchanges, and are 

removed. Bridges with codes 1-4 
under item 42B removed for same 

reason. 

Bicycle 
bridge 

42A: Type of service Not focus of this study 
Code 3 in item 42A indicates 

bicycle bridge. 

Not 
susceptible 
to scour as 

per NBI 

113: scour criticality 
Bridge is removed if it is 

deemed not susceptible to 
scour in NBI.  

Code N for NBI item 113 
indicates bridge is not susceptible 

to scour. 

 

Once the data were collected in a spreadsheet format, required calculations were made to 

compute risk for each bridge. The resulting risk parameter ranged between zero and one. The 

data were transferred to the GIS software ARCGIS Pro, and was superimposed on New York 

State map delineating county borders. Each bridge was tagged on the map using its longitude 

and latitude information. All subsequent calculations and other relevant information and data 

such as images, scour inspection logs and reports can be tagged uniquely to each bridge on the 

map as needed. The focus of the present study was to visualize risk of scour failure for bridges 

across New York. The resulting map is presented in the next section. 

 Risk maps for New York State bridges 

The procedures outlined in previous sections were used to compute risk of scour failure for the 

10,200 bridges considered in New York State. From the bridges investigated, 30 yielded a 
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probability of overtopping of 0 indicating an excellent condition for the bridge. The majority of 

bridges had an annual risk less than $10,000. The risk scores can be used to perform a range of 

analyses, including ranking of bridges, based on risk, for prioritization of post-storm inspections, 

for distribution of state funds among counties and localities based on scour failure risk, and for 

planning routes for inspection and investigation of scour conditions.  

Results of the risk analysis performed following methods described in this section are presented 

in Figure 29. The map shows mean risk for all counties in New York state. The highest risk was 

computed for Kings county, while multiple other counties in upstate New York also posed high 

risks. A plot of total risk of each county is also presented in Figure 30, showing a readjustment of 

county rankings with total risk. This adjustment reflects the different total number of bridges 

within counties, and can have important implications for planning and distribution of funds for 

scour monitoring and mitigation programs. 

 
Figure 29. Mean risk map of all bridges in New York. 
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A point plot of one hundred bridges with the highest risk of scour failure in the state are shown 

in Figure 31. Each dot is color-coded to show the level of risk. The total risk for each bridge was 

normalized by the total risk of the bridge with the highest risk. Therefore, a normalized risk of 

one means the bridge has the highest risk in the state, and all other bridges have a normalized 

risk less than one, and relative to the highest risk. The normalized risk was divided into five 

categories, based on statistical analysis of the total risk range for the top one hundred bridges. 

These categories can be adjusted to reflect traditional classifications such as scour-criticality. 

Among the bridges considered, one bridge had a normalized risk score greater than 0.5, seven 

bridges had a normalized score between 0.1 and 0.5, and 24 bridges had a normalized risk score 

between 0.05 and 0.1. It is important to note that these rankings are to be used for prioritization 

and planning purposes; the low normalized risk score does not indicate low global risk of scour 

failure. The inset in Figure 31 shows a close-up of the Kings county area, revealing the significant 

number of bridges with moderate to high risk in this area. 

 
Figure 30. Total risk map of all bridges in New York. 
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Figure 31. Normalized risk map of top 100 bridges with highest risk of scour failure in New York. 

8. CONCLUSIONS AND FUTURE DIRECTIONS 

In this study, technological advances were made in terms of hardware and software to facilitate a geographic 

information system (GIS)-based scour risk assessment using autonomous underwater vehicles (AUV). The 

contributions of the work included:  

(1) Adaptation of an existing AUV for bridge scour monitoring and inspection. The AUV 

adaptations included hardware upgrades, such as improvements on fabrication methods, 

upgrades on motor components for navigation in riverine environments, navigation, 

onboard processors, and instrumentation to accommodate collection of bathymetric data 

from a bridge site. 
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(2) Development of codes and algorithms to guide navigation of the AUV, and to process 

typical digital images collected in AUV missions at bridge pier sites. Specifically, codes were 

developed to analyze typical acoustic images of bridge piers for extraction of features of 

interest to scour monitoring, including the bridge pier structure and the riverbed outline. 

Methods developed included preprocessing using the Savitsky-Golay filter and entropy and 

range filtering, edge detection algorithms using the Prewitt operator, the Gabor filter, and 

K-means clustering, and the use of Hough transform. The algorithms were implemented in 

Matlab and OpenCV. Details of the image processing algorithms, the underlying theory, 

and results applied to a set of sample acoustic images were presented. 

(3) Simulation of AUV path finding and navigation using the state-of-the-art Mission Oriented 

Operating Suite (MOOS) simulation environment, which is a multi-objective optimization 

system based on interval programming. A navigation algorithm was programmed to allow 

for typical AUV scour monitoring missions. The platform can be used to program 

autonomous missions for the AUV in future work. 

(4) Development of a GIS-based platform to prioritize bridge scour monitoring and inspection 

programs using AUVs and other methods. A risk assessment model based on the HYRISK 

model by Stein et al. (2006), and extended by Khelifa et al. (2013), was implemented by 

computing probability of failure and cost of failure for over 10,200 bridges in New York 

State for which scour susceptibility was applicable. Risk of scour-related failure was defined 

as the product of the probability of failure and the cost of failure, along with several risk 

adjustment factors. Data from the National Bridge Inventory (NBI) was used to compile a 

database of bridge properties relevant to the HYRISK model. The model used several NBI 

items to quantify the probability of failure for a given bridge using overtopping frequency 

and scour vulnerability interpretations from the NBI data. The NBI items used to compute 

the probability of failure included the functional class (NBI item 26), waterway adequacy 

(NBI item 71), scour vulnerability (NBI item 61) and substructure conditions (NBI item 60). 

Cost of failure was quantified for each bridge as the product of the rebuilding cost, the 

running cost, time loss cost, and the cost of life. All relevant data was compiled in a GIS map 
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of New York State, using the software ArcGIS. A set of risk maps were generated to 

demonstrate the efficacy of the developed model in visualizing risk distribution throughout 

the state, which can be useful in decision-making and planning for post-storm prioritization 

of AUV deployment for scour assessment and other mitigative actions. 

While the majority of the objectives of the study were achieved, setbacks in development f the 

AUV prevented field deployment during the course of this study. In future work, the AUV will 

be tested in riverine environments to assess its capabilities in autonomous navigation, acoustic 

image acquisition, and transfer of information for further scour analysis. Once the AUV is tested 

for autonomy, scour assessment missions will be carried out to test the efficacy of the image 

processing algorithms developed as part of this study. The OpenCV implementation of the codes 

will be used for onboard processing of the acquired images. MOOS simulations will be used to 

aid autonomous missions. Once missions are completed, the information can be relayed to a 

central server, where the relevant scour data including images of the pier, scour conditions, 

riverbed parameters, bathymetric data, and scour hole depth can be tagged to the developed GIS 

model. In future work, this information can be used to automatically update the GIS-based 

HYRISK risk assessment model. Risk maps can therefore be automatically updated following 

AUV scour assessment missions. Continuous deployment of AUVs throughout the state may be 

a cost-effective means of monitoring scour conditions in the state’s bridges, particularly in the 

wake of extreme weather events.  
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APPENDIX A: OPENCV IMPLEMENTATION OF MATLAB CODES DEVELOPED 

IN THIS STUDY 

Listing 1: Implementation of Entropy in OpenCV: 

#include "opencv2/highgui.hpp" 
#include "opencv2/imgproc.hpp" 
#include <iostream> 
#include <stdio.h> 
#include <time.h> 
using namespace std; 
using namespace cv; 
static int sub_to_ind(int *coords, int *cumprod, int num_dims) 
{ 
    int index = 0; 
    int k; 
 
    assert(coords != NULL); 
    assert(cumprod != NULL); 
    assert(num_dims > 0); 
 
    for (k = 0; k < num_dims; k++) 
    { 
        index += coords[k] * cumprod[k]; 
    } 
 
    return index; 
} 
 
static void ind_to_sub(int p, int num_dims, const int size[], 
    int *cumprod, int *coords) 
{ 
    int j; 
 
    assert(num_dims > 0); 
    assert(coords != NULL); 
    assert(cumprod != NULL); 
 
    for (j = num_dims - 1; j >= 0; j--) 
    { 
        coords[j] = p / cumprod[j]; 
        p = p % cumprod[j]; 
    } 
} 
 
void getLocalEntropyImage(cv::Mat &gray, cv::Rect &roi, cv::Mat &entropy) 
{ 
     
    clock_t func_begin, func_end; 
    func_begin = clock(); 
    //1.define neighborhood model,here it's 9*9 
    int neighborhood_dim = 2; 
    int neighborhood_size[] = {9, 9}; 
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    //2.Pad gray_src 
    Mat gray_src_mat(gray); 
    Mat pad_mat; 
    int left = (neighborhood_size[0] - 1) / 2; 
    int right = left; 
    int top = (neighborhood_size[1] - 1) / 2; 
    int bottom = top; 
    copyMakeBorder(gray_src_mat, pad_mat, top, bottom, left, right, 
BORDER_REPLICATE, 0); 
    Mat *pad_src = &pad_mat; 
    roi = cv::Rect(roi.x + top, roi.y + left, roi.width, roi.height); 
 
    //3.initial neighborhood object,reference to Matlab build-in neighborhood 
object system 
    //        int element_num = roi_rect.area(); 
    //here,implement a histogram by ourself ,each bin calcalate gray value 
frequence 
    int hist_count[256] = {0}; 
    int neighborhood_num = 1; 
    for (int i = 0; i < neighborhood_dim; i++) 
        neighborhood_num *= neighbood_size[i]; 
 
    //neighborhood_corrds_array is a neighbors_num-by-neighborhood_dim array 
containing relative offsets 
    int *neighborhood_corrds_array = (int 
*)malloc(sizeof(int)*neighborhood_num * neighborhood_dim); 
    //Contains the cumulative product of the image_size array;used in the 
sub_to_ind and ind_to_sub calculations. 
    int *cumprod = (int *)malloc(neighborhood_dim * sizeof(*cumprod)); 
    cumprod[0] = 1; 
    for (int i = 1; i < neighborhood_dim; i++) 
        cumprod[i] = cumprod[i - 1] * neighborhood_size[i - 1]; 
    int *image_cumprod = (int*)malloc(2 * sizeof(*image_cumprod)); 
    image_cumprod[0] = 1; 
    image_cumprod[1] = pad_src->cols; 
    //initialize neighborhood_corrds_array 
    int p; 
    int q; 
    int *coords; 
    for (p = 0; p < neighborhood_num; p++){ 
        coords = neighborhood_corrds_array + p * neighborhood_dim; 
        ind_to_sub(p, neighborhood_dim, neighborhood_size, cumprod, coords); 
        for (q = 0; q < neighborhood_dim; q++) 
            coords[q] -= (neighborhood_size[q] - 1) / 2; 
    } 
    //initlalize neighborhood_offset in use of neighbornood_corrds_array 
    int *neighborhood_offset = (int *)malloc(sizeof(int) * neighborhood_num); 
    int *elem; 
    for (int i = 0; i < neighborhood_num; i++){ 
        elem = neighborhood_corrds_array + i * neighbood_dim; 
        neighborhood_offset[i] = sub_to_ind(elem, image_cumprod, 2); 
    } 
 
    //4.calculate entropy for pixel 
    uchar *array = (uchar *)pad_src->data; 
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    //here,use entroy_table to avoid frequency log function which cost losts 
of time 
    float entroy_table[82]; 
    const float log2 = log(2.0f); 
    entroy_table[0] = 0.0; 
    float frequency = 0; 
    for (int i = 1; i < 82; i++){ 
        frequency = (float)i / 81; 
        entroy_table[i] = frequency * (log(frequency) / log2); 
    } 
    int neighborhood_index; 
    //        int max_index=pad_src->cols*pad_src->rows; 
    float e; 
    int current_index = 0; 
    int current_index_in_origin = 0; 
    for (int y = roi.y; y < roi.height; y++){ 
        current_index = y * pad_src->cols; 
        current_index_in_origin = (y - 4) * gray.cols; 
        for (int x = roi.x; x < roi.width; x++, current_index++, 
current_index_in_origin++) { 
            for (int j = 0; j<neighborhood_num; j++) { 
                neighborhood_index = current_index + neighborhood_offset[j]; 
                hist_count[array[neighborhood_index]]++; 
            } 
            //get entropy 
            e = 0; 
            for (int k = 0; k < 256; k++){ 
                if (hist_count[k] != 0){ 
                    //                                        int 
frequency=hist_count[k]; 
                    e -= entroy_table[hist_count[k]]; 
                    hist_count[k] = 0; 
                } 
            } 
            ((float *)entropy.data)[current_index_in_origin] = e; 
        } 
    } 
    free(neighborhood_offset); 
    free(image_cumprod); 
    free(cumprod); 
    free(neighborhood_corrds_array); 
 
    func_end = clock(); 
    double func_time = (double)(func_end - func_begin) / CLOCKS_PER_SEC; 
    std::cout << "func time" << func_time << std::endl; 
} 
int main(int argc, char** argv) 
{ 
    cv::Mat src;  
 
    /// Load image 
    src = cv::imread("/home/ubuntu/Downloads/bridge.jpeg"); 
    if (!src.data) 
    { 
        std::cout << "Usage: EntropyFilter <path_to_image>" << std::endl; 
        return -1; 
    } 
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    /// Convert to grayscale 
    cvtColor(src, src, cv::COLOR_BGR2GRAY); 
 
    //Calculate Entropy Filter 
    cv::Rect roi(0, 0, src.cols, src.rows); 
    cv::Mat dst(src.rows, src.cols, CV_32F); 
    getLocalEntropyImage(src, roi, dst); 
    cv::normalize(dst, dst, 0, 255, cv::NORM_MINMAX); 
    cv::Mat entropy; 
    dst.convertTo(entropy, CV_8U); 
 
    /// Display results 
    namedWindow("Original", cv::WINDOW_AUTOSIZE); 
    namedWindow("Entropy Filter", cv::WINDOW_AUTOSIZE); 
 
    imshow("Original", src); 
    imshow("Entropy Filter", entropy); 
 
    /// Wait until user exits the program 
    cv::waitKey(0); 
    return 0; 
} 

Listing 2: Savitsky-Golay custom implementation in OpenCV: 

#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
#include<iostream> 
#include<cmath> 
using namespace cv; 
using namespace std; 
 
int main(int argc, char** argv) 
{ 
Mat im_rgb ; //original image 
Mat im_gray; //grayscale image 
Mat im_rgb_out; 
Mat im_dst; //output image 
 
int ddepth; 
Point anchor; 
double delta; 
int kernel_size; 
int order; //polynomial order 
int terms; //total number of terms according to order 
 
ddepth=-1; //indicates depth od destination image is similar to original 
delta = 0; //value to be added to each pixel after convolution 
anchor = Point(-1, -1); //indicates anchor is center that is center point 
will be changed by output value 
kernel_size=5; //5X5 window (ideal) 
order=3; //ideal 
terms=10; //for order 3 
 
char* window_name1 = "Savitzky Filter"; 
char* window_name2 ="Original"; 
char* window_name3= "Grayscale image"; 
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char* window_name4= "Grayscale Output After Smoothing"; 
 
namedWindow(window_name1, CV_WINDOW_AUTOSIZE); //create window 
namedWindow(window_name2, CV_WINDOW_AUTOSIZE); //create window 
namedWindow(window_name3, CV_WINDOW_AUTOSIZE); //create window 
namedWindow(window_name4, CV_WINDOW_AUTOSIZE); //create window 
 
im_rgb =imread("/home/ubuntu/Downloads/bridge.jpeg"); 
 
//check image 
if(!im_rgb.data) 
return -1; 
 
cvtColor(im_rgb, im_gray, CV_RGB2GRAY); //convert in grayscale 
 
//create X for 3rd order 
 
Mat X(kernel_size*kernel_size, terms, CV_32FC1); 
 
int i=0; //data 
 
while(i<kernel_size*kernel_size) 
{ 
  for(int j=-kernel_size/2;j<=kernel_size/2;j++) 
  { 
    for(int k=-kernel_size/2; k<=kernel_size/2; k++) 
    { 
      X.at<float>(i,0)=1; 
      X.at<float>(i,1)=j; 
      X.at<float>(i,2)=k; 
      X.at<float>(i,3)=pow(j,2); 
      X.at<float>(i,4)=pow(k,2); 
      X.at<float>(i,5)=j*k; 
      X.at<float>(i,6)=pow(j,3); 
      X.at<float>(i,7)=pow(k,3); 
      X.at<float>(i,8)=(pow(j,2))*k; 
      X.at<float>(i,9)= j*(pow(k,2)); 
      ++i; 
    } 
  } 
} 
 
//create kernel auto values 
//float data[5][5]= {{-0.0743, 0.0114, 0.0400, 0.0114, -0.0743},{0.0114, 
0.0971, 0.1257, 0.0971, 0.0114},{0.0400, 0.1257, 0.1543, 0.1257, 0.0400}, 
{0.0114, 0.0971, 0.1257, 0.0971, 0.0411},{-0.0743, 0.0114, 0.0400,  0.0114, 
-0.0743}}; 
 
//Mat kernel(kernel_size, kernel_size, CV_32FC1, data); // (size, size, type: 
CV_,NO_ofbits,type_of_bits,channel,number_of_channel) 
 
Mat kernel(kernel_size,kernel_size,CV_32FC1); 
 
Mat C= ((X.t()*X).inv())*X.t(); //kernel mathematics 
 
vector<float> vec=C.row(0); //only C00 for smoothing C01 for 1st derivative 
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memcpy(kernel.data, vec.data(), vec.size()*sizeof(float)); //storing C00 into 
kernel 
 
float s= cv::sum(kernel)[0]; 
kernel=kernel/s; //kernel to be convoluted 
 
//float s= cv::sum(kernel)[0]; //0 for 1 channel 
//kernel=kernel/s; 
 
filter2D(im_rgb, im_rgb_out,ddepth, kernel, anchor, delta, BORDER_DEFAULT); 
 
filter2D(im_gray, im_dst, ddepth, kernel, anchor, delta, BORDER_DEFAULT); 
 
imshow(window_name1, im_rgb_out ); 
imshow(window_name2, im_rgb); 
imshow(window_name3, im_gray); 
imshow(window_name4,im_dst); //show manual created kernel for differentiating 
cv::waitKey(0); 
return 0; 
} 

 

Listing 3: Hough transform example in OpenCV: 

#include<iostream> 
#include<opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
 
using namespace std; 
using namespace cv; 
int main(int argc, char** argv) 
{ 
char* window_name1="Original"; 
 
namedWindow(window_name1, CV_WINDOW_NORMAL); //create window 
 
Mat im_rgb =imread("/home/ubuntu/Downloads/bridge.jpeg"); 
Mat dst, cdst; 
Canny(im_rgb, dst, 50,200,3); 
cvtColor(dst, cdst, CV_GRAY2BGR); 
vector<Vec4i> lines; 
HoughLinesP(dst, lines, 1, CV_PI/180, 100,40,10); 
for(size_t i=0; i<lines.size(); i++) 
{ 
   Vec4i l=lines[i]; 
   line(cdst, Point(l[0], l[1]), Point(l[2],l[3]), Scalar(0,0,255), 3, 
CV_AA); 
 
} 
imshow(window_name1, im_rgb ); 
imshow("detected", cdst); 
 
waitKey(); 
return 0; 
} 
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Listing 4: Range filtering OpenCV algorithm: 

#include<iostream> 
#include "opencv2/imgproc/imgproc.hpp" 
#include "opencv2/highgui/highgui.hpp" 
#include "highgui.h" 
#include<stdlib.h> 
#include <stdio.h> 
 
using namespace std; 
using namespace cv; 
 
int main() 
{ 
Mat im_orig; //input image 
Mat im_erode, im_dilate; //output image 
Mat im_diff; 
 
im_orig=imread("/home/ubuntu/Downloads/bridge.jpeg"); 
if(!im_orig.data) 
return -1; 
 
cvtColor(im_orig, im_orig, COLOR_BGR2GRAY); 
namedWindow("Erosion", CV_WINDOW_AUTOSIZE); 
namedWindow("Dilation", CV_WINDOW_AUTOSIZE); 
namedWindow("Difference", CV_WINDOW_AUTOSIZE); 
 
 cout<<"Implementing Erosion: "<<endl; 
Mat element_erode = getStructuringElement( MORPH_RECT, 
                                       Size( 5, 5 ), 
                                       Point(-1,-1) ); 
 
  /// Apply the erosion operation 
  erode( im_orig, im_erode, element_erode ); 
  imshow( "Erosion", im_erode ); 
cout<<"Implementing Dilation" <<endl; 
Mat element_dilate = getStructuringElement( MORPH_RECT, 
                                       Size( 5, 5 ), 
                                       Point(-1,-1 ) ); 
  /// Apply the dilation operation 
  dilate( im_orig, im_dilate, element_dilate ); 
  imshow( "Dilation", im_dilate ); 
 
cout<<"Range Filtered Image:"<<endl; 
im_diff=im_dilate-im_erode; 
imshow("Difference",im_diff); 
 
waitKey(0); 
return 0; 
} 
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