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LIST OF FIGURES 
 

 
 

FIG. 1. Schematic diagram and photographs of the proposed airfoil-typed 

electromagnetic energy harvester with trajectory matching magnets array (6 

magnets) and moving coil. 

 
 

FIG. 3. Measured induced voltage (Vo) of the proposed airfoil-based electromagnetic 

energy harvester with (a) 2 magnets, (b) 4 magnets, and (c) 6 magnets, 

respectively. 

 
 
FIG. 4. Power output at a function of resistance loads of the (a) proposed 

(electromagnetic) energy harvester with 6 (upper and lower) magnets 

arrangement and (b) piezoelectric based energy harvester operated at 7.18 m/s. 

 
 

FIG. 5. Power output from the different typed energy harvester operated at the wind 

speed of 4.5-7.3 m/s, respectively. 
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Executive Summary 

 

The airfoil-based electromagnetic energy harvester containing parallel array motion 
between moving coil and trajectory matching multi-pole magnets was investigated. The 
magnets were aligned in an alternatively magnetized formation of 6 magnets to explore 
enhanced power density. In particular, the magnet array was positioned in parallel to the 
trajectory of the tip coil within its tip deflection span. The finite element simulations of 
the magnetic flux density and induced voltages at an open circuit condition were studied 
to find the maximum number of alternatively magnetized magnets that was required for 
the proposed energy harvester. Experimental results showed that the energy harvester 
with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an 
induced voltage (Vo ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω 
optimal resistance load operating with the wind speed (U ) at 7 m/ s and a natural 
bending frequency of 3.54 Hz. 

 
 
 

Background 
 

Energy Harvesting (EH) is the process of capturing residual energy from one or 
several sources, which can then be harvested, stored, and conditioned for many low 

voltage/power electronic and sensor devices that required power supplies or batteries.1-
 

2 Currently, electrochemical batteries (zinc–carbon batteries, lithium-ion, etc.) are the 
main energy source for low-power application, especially portable/remote electronic 
devices. However, the size, cost, and maintenance, such as the burden of replacement 

or recharging of batteries limited its use in remote electronic application. 1-4 Therefore, 
the need of alternative power sources or EH that overcome these limitations are highly 
desirable. 

Nowadays, most of the existing energy harvesting research has focused on the 

electromagnetic and piezoelectric transformation mechanism.5 In the past, scientists 

had placed much of their efforts in harvesting the mechanical vibrations from humans6 

or moving vehicles. Recently, the focus on harvesting aeroelastic vibration to electrical 

energy has received a lot of attention over the last few years.7-8 The goal is to convert 
airflow energy into electricity for powering small electronic components employed in 
remote applications, specifically those that are located in an environment with critical 
access to the electronic equipment in question. 

 
 
 

Objectives 
 

In this project, a unique inductive mechanism was proposed to explore an airfoil- 
based wind energy harvesting mechanism, by means of a parallel array motion between 
multi-pole magnets and a flexible coil. In order to promote maximum magnetic flux 
density, the multi-pole magnets were positioned along the trajectory of the tip of moving 
coil and its deflection span. Compared to a traditional electromagnetic energy harvester 
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using a single magnet and moving coil, our suggested harvester is able to harvest more 
energy in each period which is more suitable to power a high power electronic device. 

 
 
 

Introduction 
 

Therefore, the inductive mechanism has been utilized in the airfoil-based wind 
energy harvester, due to the fact that the maximum power of the electromagnetic 
energy harvester can be reached when the low region of the ambient frequency matches 
the resonance frequency of the energy harvester device. Dias et al. proposed to attach 
a single magnet to the tip of the airfoil, so that the relative translating motion could also 
be captured by the electromagnetic induction. This would then allow the piezoelectric-
inductive transduction to be incorporated into a fully coupled three-DOF 
electroaeroelastic model. However, both of them did not consider any design aspects of 
the inductive mechanisms in array magnets nor were any experimental investigations 
performed. 13,17,18

 

 
 
 

Summary of the Literature Review 
 

In recent years, a  number of studies  have focused on the  use of aeroelastic 
vibrations to harvest energy from the wind. Erturk et al. showed theoretically and 
experimentally that the energy can be harvested from aeroelastic vibrations, by using an 
airfoil  attached  to  the  cantilever  beams  with  piezoelectric  materials  fixed  onto  the 
beams.9  Abdelkefi et al. investigated the level of harvested power from aeroelastic 
vibrations for an elastically mounted wing supported by nonlinear springs.10 Later, Yang 
el al. studied different tip cross-sections profiles of the piezoelectric cantilever for small 

scale wind energy harvesting based on the galloping phenomenon.11 Magnets have 
since been introduced to exploit the nonlinear piezoelectric region for broadband energy 
harvesting, however, the energy levels that can be harvested from a piezoaeroelastic 

energy harvester was limited due to the low operational natural frequency.11-16
 

 
 
 

Summary of the Work Performed 
 

The proposed wind energy harvester was assembled by an airfoil supported by two 
aluminum beams, 2 flexible moving coils, and 12 NdFeB magnets [Fig. 1]. The airfoil 
was printed by the 3D System CubePro, a printer that uses a PLA filament according to 
NACA 0012 type dimension ratio (weighing 242 g, a span length of 20 cm, and half cord 
length of 5 cm). An aluminum rod was placed through the axis hole of the airfoil and 
then supported by two 6061-type aluminum cantilever beams (300 mm × 35 mm × 1.6 
mm). Additionally, two-music wire torsional springs (spring coefficient of 0.2442) were 
installed between the beams and airfoil to provide the restoring rotation force. The two 
flexible coils (inner diameter of 10 mm, outer diameter of 25mm, height of 10mm, and 
900 turns) made of copper wire were attached on the upper and lower axis hole of the 
cantilever beams. By considering the winding gap inside the coil, the internal resistance 
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(R) of a flexible coil can be written as19
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R =
 NM   
14250W 

2
 

(1) 

where N is the no. of turns of the coil; M is the mean of the diameter of the coil; and 
W is the diameter of the copper wires. Finally, the airfoil was attached to the free end of 
the cantilever beams by aluminum blots. The multi-pole magnetic array, supplied by the 
K&J magnetic, was assembled by 6 same-size N52 NdFeB magnets (25.4 mm × 25.4 
mm × 9.5 mm and 1.43 T of residual induction), in the position of the trajectory, which 
was determined by deflection range of the tip. The relative bigger magnets comparing 
with the coils were chosen to prevent magnetic flux density created in coil. The two- 
magnet-arrays were installed respectively using the two upper and lower aluminum 
bolts to provide the alternative magnetic flux for the moving coil. In the meantime, two 
piezoelectric (MFC) patches (M-8528-P1 103 mm × 35 mm × 0.2 mm), supplied from 
Smart Material Corporation, were attached onto the two aluminum cantilever beams for 
a power output comparison. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

The operational principle of the EH presented here was based on the bending 
oscillations of an airfoil supported by a pair of cantilever beams that faces the direction 
of the wind. When the air flowed towards the front of the airfoil, an initial force was 
applied onto the beam causing the cantilever beam to operate and spring back, thus 
causing the cantilever beams to oscillate. This allows the energy harvester to sustain 
the necessary oscillations under uniform and steady flow conditions. When our energy 
harvester operated at a lower wind speed, the amplitude of the moving coil was able to 
reach 2 or 4 magnets. However, when the wind speed was increased, the bending 
amplitude of the moving coils and the cantilever beams also increased, which enables 
the coil to acquire stronger magnetic flux at a 6 magnet-array. Based on Eq. 1, the 6- 
magnet linear array configuration was able to harvest more energy. In addition, the 
linear electromagnetically coupled with the airfoil electroelastic equation can be written 
as follow20

 

 

(m + me 

.. 
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where m is the airfoil mass per length (in the span direction); me is the fixture mass 
(connecting the airfoil to the plunge springs) per length; M is the aerodynamic moment; 
L is the aerodynamic lift; and the over-dot represents differentiation with respect to time 
(t); l is the span length; Rl is the load resistance in the electrical domain; Rc is the 
internal resistance of the inductor coil; I is the induced electrical current; Lc is the coil 
inductance, and Bl is the electromagnetic coupling. By transforming the governing 
equations to a state-space form, the flutter speed can be obtained by monitoring the 

location of the eigenvalues of state-space form and used for the experiment.20 All the 
experiments  are  operated  above  the  predicted  flutter  speed  to  capture  the  most 
dynamic motions. 
The wind tunnel with controllable wind speeds was used in this test to apply the airflow 
for the electromagnetic airfoil-type energy harvester. The induced voltage (Vo) of the 
harvester was found by the waveforms that were obtained by the digital oscilloscope 
(Tektronix DPO2014). The power output was calculated by applying the induced 
voltages through the resistance load connected to the energy harvester. The wind 
speed was controlled by the voltage-mode controlled wind turbine, and the speed of the 
airflow inside the wind tunnel was measured by a hot-wire anemometer (Dwyer 
Instruments). In order to test the piezoelectric material, two resistance boxes were used 
as a voltage divider due to the fact that a high voltage output is produced by the direct 
piezoelectric bending effect, under an open circuit condition. The corresponding power 
was, then, determined by applying the resistance load to the output of the piezoelectric 
materials. 

Figure 2 shows the measured induced voltage of our proposed energy harvester. 
For the 2-magnet array, a peak voltage of 8.3 V was obtained at the low wind speed (U) 
of 4.61 m/s and was increased to 23 V at 7.19 m/s. Under the 4-magnet array, a peak 
voltage of 7.9 V of peak voltage was found at the wind speed of 4.46 m/s and reached 
to 20.5 V when the wind speed was increased to 6.98 m/s. And finally, for the 6-magnet 
array, a peak voltage of 8.1 V was measured at 4.49 m/s and raised to a peak voltage 
of 18 V at 7.18 m/s. All time durations (respecting to frequencies) of each peak voltages 
in  all  magnet  arrays  configuration  were  nearly  the  same  because  of  the  natural 

2 

frequency ( 
h   = kh  / m , where kh is the stiffness per length in the plunge DOF and m is 

the airfoil mass per length) of the unchanged flexible coils and airfoil.20
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Figure 2 
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Figure 3 

 
Figure 4 

 
 
 

Conclusions 
 

an electromagnetic airfoil-typed energy harvester based on the parallel array motion 
between the trajectory matching multi-pole magnets and flexible coil was investigated. 
The magnetic flux density and the induced voltages of the moving coil that operated 
under 2, 4, and 6-magnet array were studied. From the experimental results the number 
of pulses displaying the induced voltages in each period increased significantly with 
respect to the number of magnets utilized in the magnet array. Based on the simulation 
results, the number of magnets can be determined. Compared with a piezoelectric- 
based airfoil energy harvester the power output significantly increased which makes the 
parallel motion of the linear magnet array and coil more suitable for energy harvesting 
under the condition of a low natural frequency that can be expected in air flow. 
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Implementation and Training 
 

Compared to the traditional electromagnetic energy harvester with a single magnet 
moving through a coil, the proposed energy harvester, containing multi-pole magnets 
and parallel array motion, enables the moving coil to accumulate a stronger magnetic 
flux in each period of the swinging motion. In addition to the comparison made with the 
airfoil-based piezoelectric energy harvester of the same size, our proposed 
electromagnetic energy harvester generates 11 times more power output, which is more 
suitable for high-power-density energy harvesting applications at regions with low 
environmental frequency. 
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