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Abstract 
 

 

Vehicle-generated emissions remain a serious threat to the health of urban and suburban communities. 

Among the strategies implemented to address this environmental problem are area- and cordon-based 

pricing (ACP) schemes. Experiences in major cities such as London, Stockholm, and Milan show that ACP 

schemes are effective in reducing traffic emissions and the related public health risks. However, designing 

ACP schemes continues to be a challenging task given the complexities of estimating the effects of this 

type of strategy. In response to this design problem, optimization-based approaches have been proposed to 

aid transportation planning agencies in determining optimal charging boundary locations and toll levels. 

Existing engineering methodologies focus only on congestion-related goals, as well as employing an 

aggregate representation of travel demand corresponding to a single design period (e.g., the morning peak 

hour). The existing models, however, do not account for the impacts of ACP schemes on pollutant 

distribution throughout the day, nor the resulting effects the levels of pollutant exposure experience by the 

public.  

In this project an ACP design approach is proposed that considers: a) the effects on pollutant 

concentrations of the pricing scheme, b) the effects on travelers’ activity, schedule, and time-use 

preferences at a disaggregate level, c) the space-time distribution of pollutants along with the space-time 

distribution of travelers, and d) planning goals related to system-wide congestion levels and public health. 

Two types of planning problems are considered. In the first problem, it is assumed that the decision-maker 

is interested in designing a pricing schemes that achieves a mobility-related goal, while simultaneously 

reducing pollutant concentration levels below a pre-established threshold. The second problem adds an 

environmentally-oriented objective to the decision-makers plans. For the purpose of simulating the human 

exposure of pollutants at the level of individual agents, a new activity-based travel model is presented. 

The proposed ACP design problems are formulated as bi-level, simulation-based optimization problems. 

A problem’s upper-level is composed of the policy makers’ goals, which guide the selection of charging 

boundary’s location and its associated tolling levels. The travelers’ response to the policy maker’s 

decisions, as well as the resulting system-wide impacts, are analyzed in the lower-level. The lower-level 

model system is composed of five sub-models: (a) models to simulate the travel behavior changes caused 

by the pricing scheme, (b) a traffic assignment model to estimate the distribution of traffic in the network, 

(c) a traffic emissions model, (d) a pollutant dispersion model, and (e) a pollutant exposure model. To solve 

the proposed design problems, two surrogate-based solution heuristics are proposed. A series of numerical 

tests are presented to illustrate the application and performance of the proposed methodology. 
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1 Introduction 
 

 

Despite the technological advances made in recent decades, motor vehicles continue to be a major source 

of air pollutants that significantly affect public health. Just in the US, vehicle emissions are estimated to 

account for 60,000 premature deaths each year, making road transportation the deadliest sector in terms of 

air pollution-related mortality (Caiazzo et al., 2013). Worldwide, it is estimated that 150,000 people die 

each year from diseases caused by exposure to vehicle-generated air pollutants, a figure that could 

dramatically increase with continued trends in urbanization and car ownership in the developing world 

(World Bank, 2010). Motor vehicles also are a major source of emissions that contribute to climate change. 

Globally, motor vehicles are estimated to produce 10% of greenhouse gas (GHG) emissions, but in the US 

the road transportation sector is responsible for 23% of GHG emissions (OECD/ITF, 2010; US EPA, 2014). 

How can cities reduce vehicle-generated air pollutants? Since at least the early 20th century, economic 

theory has pointed to road pricing as a response to the negative externalities of road transportation. Several 

cities have shown that, in practice, pricing is indeed an effective strategy. For example, a major 

implementation of a road pricing scheme is London’s congestion charging zone, which decreased 

particulate matter emissions by approximately 10 percent (Tonne et al., 2008). In Stockholm a congestion 

charging system resulted in air pollutant reductions of around 10 percent (Eliasson et al., 2009). And, 

Milan’s area pricing scheme produced comparatively positive results, including a 23 percent reduction in 

the concentration of particulate matter within the charging area (Rotaris et al., 2010). The previous cases 

are examples of area- and cordon-based pricing (ACP) schemes. Ongoing concerns regarding pollution 

levels in urban regions continue to drive interest in ACP schemes, as evidenced by the ACP proposals under 

consideration in New York City and Los Angeles (Fix NY, 2018; SCAG, 2016). 

There are, however, major technical challenges in planning an effective road pricing scheme. To aid 

decision-makers in the design of ACP schemes, transportation engineers have proposed a series of network 

design problems (NDPs) focused on congestion reduction. These problems are characterized, in part, by 

aggregate representations of travel demand for a single time period (e.g., peak hours). Existing ACP model 

formulations do not account for (a) travelers’ mobility behavior and activity patterns in relation to a pricing 

scheme, (b) the effects of ACP schemes on emissions and pollutant concentrations, and (c) the resulting 

variations in human pollutant exposure. In addition, available ACP models and solution algorithms are only 

applicable to single-objective problems, while decision makers interested in achieving both mobility and 

environmental sustainability goals must weigh multiple, potentially conflicting, objectives.  

Given the potential environmental benefits of road pricing and the limitations of existing NDPs, a novel 

optimization-based approach to the design of sustainable ACP schemes is proposed in this report. The 

models in this report: 

 Can be used to design ACP schemes that have a single or multiple planning objectives. 

 Account for mobility goals of both policy makers and travelers, as well as the public health concerns 

associated with traffic emissions. 

 Consider the design of ACP schemes under environmental constraints 

 Integrate activity-based models to simulate scheduling and mode choice behavior  

 Determine charging boundaries and toll levels that shift individuals’ travel choices in space and 

time so that human exposure to traffic pollutants and total travel disutility are minimized.  

In addition, two heuristics are presented in this report to solve single and multi-objective NDP for the design 

of ACP schemes. The heuristics employ a technique (surrogate-based optimization, SBO) that attempts to 

accelerate the discovery of good design solutions, a problem of practical concerns given the considerable 

computing requirements that ACP design problems can require.  

 Besides this introduction, this report is composed of five sections. 

 Section 2: Overview of Previous Studies. A review of relevant literature is presented in Section 2. 

This review includes a discussion of environmentally-oriented NDP models for road pricing 
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schemes, a summary of existing methods for the design ACP schemes, and an overview of activity-

based models (ABM) used to study and describe people’s travel behavior.  

 Section 3: Methodology. In this section the planning models for the design of ACP schemes are 

introduced. These models include single- and multi-objective formulations of the ACP planning 

problem. Furthermore, the different components of the model systems needed to design ACP 

schemes are discussed. The model system comprises five sub-models to simulate: traffic flows; 

traffic emissions; pollutant concentrations; activity participation, activity scheduling, and mode 

choice; and human exposure to pollutants. The section ends with a step-by-step description of the 

proposed solution heuristics. 

 Section 4: Tests and Results. An illustrative application of the proposed models and solution 

heuristics is included in Section 4. Results are shown for tests of: (a) the predictive accuracy of 

four surrogate model types, (b) the performance of the heuristics proposed for the single-objective 

problems, and (c) the performance of the heuristic proposed for multi-objective ACP problems.    

 Section 5: Conclusion. A summary of the methodological advances proposed in the report is 

presented in Section 5. In addition, future research directions are identified. 
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2 Overview of Previous Studies 
 

 

Considerable work has been conducted on: (a) the development of environmentally-oriented NDPs for the 

design of road pricing schemes, (b) optimization-based methods for designing ACP schemes, (c) SBO 

approaches to solve transportation engineering problems, and (d) the modeling of human activity 

participation and scheduling behavior. An overview of this literature is presented next. 

 

2.1 Environmentally-oriented road pricing 
 

A defining feature of ACP schemes is the existence of a closed charging boundary that encircles the 

charging area; all vehicles crossing (cordon-based scheme) or driving within (area-based scheme) the 

charging boundary must pay a toll. In contrast, other pricing schemes consists of a series of tolled roads or 

intersections with no closed boundary requirements. For these types of schemes researchers have proposed 

the toll level setting problem (TLSP) and the toll design problem (TDP). It is assumed that in the TLSP a 

planning agency has already decided in which roads the tolls will be levied, and the design problem consists 

of determining the tolling level on the selected roads. In the TDP, both the tolling location and the tolling 

level must be determined. Environmentally-oriented versions of the TLSP and the TDP have been studied. 

One of the most common and practical considerations in environmentally-oriented road pricing 

problems are environmental constraints, usually defined on the basis of environmental air quality 

regulations that establish maximum air pollutant concentrations thresholds. In NDPs with environmental 

constraints, the goal is to find a tolling scheme that optimizes a given planning objective (e.g., minimizing 

network-level travel time) subject to an environmental requirement. An example of environmental 

constraints is the link-based environmental capacity constraint, which defines a traffic flow limit that cannot 

be exceed because of the expected level of emissions that such an event would entail. This concept has been 

used in road pricing problems that consider fixed, variable, and uncertain travel demand (Ferrari, 1995; 

Yang and Bell, 1997; Li et al., 2012). Other types of environmental constraints are link-based emission 

constrains, which as their name suggest specifically constraint the level of emissions on roads (i.e., links) 

(e.g., see Nagurney, 2000), and network-wide emission constrains, which constraint the total level of 

emissions generated on the road network. The latter type of constraint is particularly relevant in the context 

of greenhouse gas emissions, which have global, but not local, effects in the short term (Sharma and Mishra 

2013).  

Environmental considerations can also be conceptualized as planning objectives that must be 

maximized or minimized. The most common environmentally-oriented planning objectives is the 

minimization of traffic emissions, which is sometimes accompanied by objectives related to travel 

conditions (i.e., a bi-objective design problem) (Yin and Lu, 2000; Yin and Lawphongpanich, 2006). Less 

common are NDPs that consider human exposure to traffic emissions and environmental equity. In the 

model proposed by Wang et al. (2014), a road pricing model is proposed that incorporates the objective of 

minimizing the pollutants inhaled by drivers, among other objectives. Rodriguez-Roman and Ritchie (2017) 

proposed an NDP where both total intake of pollutants and environmental inequality are minimized. In this 

model, total intake of pollutants and environmentally inequality was measured using static distributions of 

populations surrounding the road network and the pollutant concentration levels at receptor points. 

 

2.2 NDPs for the Design of ACP Schemes 
 

Existing ACP design models for practical planning applications have focused on congestion pricing. 

Generally, in these problems the decision maker’s objective is to select a charging cordon’s location and 

tolling level that maximize the traveling public’s social welfare, measured in terms of travel costs. The user 

equilibrium problem with elastic demand is utilized to model traffic changes due to candidate pricing 
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schemes. Zhang and Yang (2004) proposed the cordon-based congestion pricing problem and developed a 

genetic algorithm (GA) approach for its solution. This GA heuristic incorporates the graph theory concept 

of a cutset to test a cordon’s feasibility (i.e., to ensure a closed cordon). Sumalee (2004) also developed a 

GA procedure for cordon pricing, but this algorithm employs a branch-tree framework to encode the 

network’s charging boundary. In this version of the problem the cost of implementing a cordon pricing 

scheme is considered as part of the decision maker’s objective. The GA-based heuristic proposed by 

Maruyama et al. (2014) departs from the previous graph-based frameworks by employing computational 

geometry concepts for the search of optimal cordon locations. Hult (2006) reports similar efforts by the UK 

Department of Transport (DoT) to use a GA-based geometrical approach for the cordon-based congestion 

pricing problem. In a study by Zhang and Sun (2013), the cordon problem was formulated as a mathematical 

program with complementarity constraints, and a dual-heuristic solution algorithm was proposed. 

Given their focus on congestion, the reviewed models utilize an aggregate representation of travel 

behavior for a single design time period, with no consideration of how pricing affects individuals’ activity 

participation, activity scheduling, and mode choice behaviors, or how ACP schemes impact the generation 

and dispersion of vehicle-generated air pollutants. In the next section, an environmentally-oriented ACP 

design model is presented, along with a methodology that incorporates models to simulate travelers’ activity 

patterns, as well as their associated exposure to pollutants. In addition, new single- and multi-objective 

solution heuristics are proposed to solve ACP design problems. 

Multi-objective considerations are important for the design of environmentally sustainable ACP 

schemes as the human health risks associated with the exposure to vehicle-generated pollutants depend on 

factors such as the quantity of emitted pollutants, the population densities at various times and distances 

from emission sources, and the variability of atmospheric conditions (Levy et al., 2010). Advancing ACP 

models beyond congestion-related objectives is also supported by theoretical studies that show that 

minimizing congestion does not necessarily lead to improved environmental conditions (Nagurney, 2000b), 

and that the design of sustainable cordon pricing schemes should account for traffic emissions (Li et al., 

2014).  

 

2.3 Applications of Surrogate-Based Optimization in Transportation Planning and 

Engineering 
 

The practical application of optimization based-methods to ACP design problems is limited given the time-

consuming nature of the models used to simulate the effects of an ACP scheme. This issue is compounded 

in the case of environmentally-oriented ACP design problems, as these problems require the modeling of 

vehicle emissions, pollutant concentrations, and, potentially, human exposure to pollutants. The increasing 

complexity of travel behavior and environmental impact assessment models require the development of 

efficient heuristics to solve optimization-based NDPs like the ACP problems. A promising solution 

approach is surrogate-based optimization. A surrogate model (also known as a metamodel or a response 

surface model) is a computationally inexpensive approximations to computationally expensive models. In 

surrogate-based optimization the surrogates are used to predict the value of time-consuming functions (i.e., 

models). On the basis of the surrogate predictions the heuristics screen for (or select) the candidate designs 

that are more promising. These selected solutions are then evaluated with the computationally expensive 

models. In transportation engineering applications, surrogate-based heuristics has been shown to accelerate 

the discovery of good solutions for continuous (e.g., Chow et al., 2010; Osorio and Bierlair, 2013; Lamotte, 

2014; Chen et al., 2014), discrete (Xiong and Schneider 1992; Fiske 2011; Wismans, 2012) and mixed 

integer NDPs (Chen et al., 2015; Rodriguez-Roman and Ritchie 2017). This report presents a new set of 

surrogate-based heuristics designed to search for good solutions to ACP design problems. 
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2.4 Overview of ABMs 
 

At the core of the proposed activity model lies an activity-based travel behavior model. Studies on such 

models date back to almost half a century ago, and have resulted in a wide spectrum of approaches, 

including utility-maximization models (Adler and Ben-Akiva, 1997; Brownstone and Small, 1989; Bhat et 

al,m 2004; Kitamura et al., 2000; Pendyala et al., 2005), rule-based models (Arentze et al., 2000; Miller 

and Roorda, 2003; Auld and Mohammadian, 2012), and network-based models (Recker et al., 1989; 

Recker, 1995; Recker, 2001).  In order to account for transportation demand elasticity, as reflected in 

changes in travel behavior and activity scheduling, we will use a network-based approach to infer 

scheduling behavior of travelers. This model advances the household activity pattern problem (HAPP) 

proposed by Recker (1995), a mixed integer programming (MIP) model analogous to the pick-up and 

delivery problem with time windows. In this model, it is assumed that individuals plan their daily activities 

such that generalized disutility is minimized. Several HAPP extensions have been developed and applied 

during the years. Gan and Recker (2008) expanded the HAPP model to handle uncertainties in travel time 

and activity duration that potentially lead to rescheduling (Chow and Recker, 2012; Allahviranloo and 

Recker, 2013; Allahviranloo and Recker, 2014; Regue et al., 2015). In this project, existing network- and 

activity-based models were extended by incorporating mode choice and variable travel time to HAPP. Two 

modes of transit and personal vehicles and three travel time matrixes (representing morning and afternoon 

peak hours and other times) were used in the analysis and application of the new model. Activities were 

divided into two categories of fixed and flexible, where flexible activities can be rescheduled or relocated 

to improve the associated utility gained from conducting a set of activities.  
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3 Methodology 
 

 

This section describes the formulations of the ACP design problems, the model systems used to estimate 

the user response to an ACP scheme, and the proposed solutions heuristics. 

 

3.1 General Problem Formulations 
 

An optimization-based approach is proposed for the design of ACP schemes that account for both mobility 

and environmental goals. In general terms, the design problem is formulated as a bi-level, simulation-based 

optimization problem. The problem’s upper-level consists of the decision maker’s objectives, constrains, 

and decision variables. There are two decision variables: the location of the charging boundary and the 

associated tolling level. Users’ travel response to the decision maker’s decisions and the resulting system-

wide impacts are modeled in the problem’s lower-level.  

 Two general problem formulations are discussed next. In the first problem, a single planning objective 

is envisioned in conjunction with an environmental constraint (resulting in a single objective integer 

programing problem with constraints). In the second design problem, it is assumed that the decision-maker 

seeks a pricing scheme that optimizes an environmental objective and a mobility-related objective (that is, 

a bi-objective integer programming problem). The general problem formulations of these problems are 

followed by examples of specific planning objectives that could be used to design an ACP scheme.  

The road network is represented using a graph (i.e., nodes and links). The optimal charging boundary 

and the associated tolling levels are denoted by 𝒚 and 𝝉. 𝒚 denotes the set of tolled road segments that 

enclose the urban region targeted by the pricing scheme. Each element of 𝒚 indicates if a road segment (𝑗) 

is part of the charging boundary (𝑦𝑗 = 1) or not (𝑦𝑗 = 0). Values of 𝒚 that create a closed charging 

boundary are said to be part of set θ, a set that, in addition, contains all boundaries that satisfy the shape 

constraints to be discussed in this section. 𝝉 is a set that contains the toll level information at the link level. 

For simplicity, a single tolling level is considered, represented by 𝜏. If a road segment 𝑗 is part of the 

charging boundary then the toll 𝜏 is charged on the segment (𝜏𝑗 = 𝜏). It will be assumed that the agency 

defines a set of acceptable tolling levels, ranging from 𝜏𝑚𝑖𝑛 to 𝜏𝑚𝑎𝑥. 𝒗 contains information on the system-

wide response to the pricing scheme, as modeled by the lower-level models. For expositional clarity, 

referenced will be made in the discussion that follows to area pricing only. Note that the models and solution 

heuristics can be applied with equal ease to the design of cordon pricing schemes. 

 

3.1.1 Singe-Objective Area Pricing Problem  

 

Consider a transportation agency that is interested in designing an area pricing scheme to reduce pollutant 

concentration levels at receptor points (𝐶𝑟) below a regulatory threshold 𝐶𝑚𝑎𝑥 (for simplicity, a single 

pollutant type is considered) while simultaneously minimizing a planning objective 𝑀 related to travel 

conditions in the network (see Section 3.1.3 for possible specifications of 𝑀). The upper-level design 

problem can be formulated as: 
 

min
𝑦,𝜏

𝑀(𝒚, 𝝉, 𝒗(𝒚, 𝝉)) 
 

 (1) 

subject to 

 
  

𝐶𝑟(𝒚, 𝝉, 𝒗(𝒚, 𝝉)) ≤ 𝐶𝑚𝑎𝑥 ∀ 𝑟 (1.1) 

𝜏 ∈ {𝜏𝑚𝑖𝑛, … 𝜏𝑖 , … , 𝜏𝑚𝑎𝑥}  (1.2) 

𝜏𝑗 = 𝑦𝑗𝜏 ∀𝑗 (1.3) 

𝑦𝑗 ∈ {0,1} ∀𝑗 (1.4) 

𝒚 ∈ θ  (1.5) 
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Note that constraints 1.1 have a single threshold value 𝐶𝑚𝑎𝑥, which can be interpreted as a pollutant 

concentration limit established by an air quality regulatory agency. To simplify the problem, the constraints 

1.1. can be substituted by: 

 

max
𝑟

[𝐶𝑟(𝒚, 𝝉, 𝒗(𝒚, 𝝉))] ≤ 𝐶𝑚𝑎𝑥  (1.1b) 

 

3.1.2 Bi-Objective Area Pricing Problem 

 

In the bi-objective area pricing problem it is assumed that the decision-maker seeks a scheme that minimizes 

a travel related objective 𝑀 and an environmental objective 𝐻. This problem is stated as: 

 

min
𝑦,𝜏

𝐹(𝒚, 𝝉, 𝒗) = {
𝑀(𝒚, 𝝉, 𝒗(𝒚, 𝝉)),

𝐻(𝒚, 𝝉, 𝒗(𝒚, 𝝉))
} 

 

 (2) 

subject to 

 
  

𝐶𝑟(𝒚, 𝝉, 𝒗(𝒚, 𝝉)) ≤ 𝐶𝑚𝑎𝑥 ∀ 𝑟 (2.1) 

𝜏 ∈ {𝜏𝑚𝑖𝑛, … 𝜏𝑖 , … , 𝜏𝑚𝑎𝑥}  (2.2) 

𝜏𝑗 = 𝑦𝑗𝜏 ∀𝑗 (2.3) 

𝑦𝑗 ∈ {0,1} ∀𝑗 (2.4) 

𝒚 ∈ θ  (2.5) 

 

Like in Problem 1, constraints 2.1 can be substituted by constraint 1.1b. The next subsection provides 

examples of formulations for the 𝑀 and 𝐻 objectives.  

 

3.1.3 Specification of Travel-Related Planning Objectives 

 

The specifications of the planning objectives can depend on the type of models at the analyst’s disposal. 

An easy-to-compute evaluation measure is the change in consumer surplus produced by the pricing scheme 

(de Jong et al., 2007). Consumer surplus is a common metric of benefit. This measure can be computed 

with the outputs of the discrete choice models commonly used in regional transportation planning models. 

Specifically, the change in consumer surplus can be computed using the logsum of the logit models used to 

simulate mode choice, destination choice, and/or departure time choice in planning models. Let 𝐺 denote 

the number of population groups in the travel demand model, and 𝜌𝑔 signify the population size of each 

group 𝑔. Each population group can be distinguished in terms of its area of residence and marginal utility 

of income 𝛼𝑔. Prior to the introduction of a pricing scheme, a person belonging to group 𝑔 obtains 𝑉𝑔𝑗 

utility from travel alternative 𝑗. Given a scheme specified by (𝒚, 𝝉), the utility changes to 𝑉𝑔𝑗(𝒚, 𝝉, 𝒗). Given 

this terminology, the objective of maximizing the change in consumer surplus is formulated as:   

 

𝑀𝐶𝑆(𝒚, 𝝉, 𝒗) = ∑ ∑
𝜌𝑔𝑡

𝛼𝑔
(ln (∑ 𝑒𝑉𝑔𝑗𝑡(𝒚,𝝉,𝒗)

𝑗

) − ln (∑ 𝑒𝑉𝑔𝑗𝑡

𝑗

))

𝑔𝑡

 
 (3) 

 

The index 𝑡 in equation 3 represents a time period 𝑡 in the planning model.  

 From the perspective of the single objective problem where the only environmental goal is to satisfy 

an environmental constraint, another sensible travel-related objective is to find the travel scheme that affects 

current travel conditions the least. That is, the decision-maker would attempt to minimize deviations from 

the status quo. This is an attractive travel objective from a political standpoint, as pricing schemes are 
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generally met with oppositions from groups that identify with the drivers affected by the tolling. Let 𝑠𝑤𝑡  

represent the auto mode share for origin-destination pair 𝑤 and time period 𝑡 prior to the pricing scheme, 

and 𝑠𝑤𝑡(𝒚, 𝝉) represent the auto mode share under charging scheme (𝒚, 𝝉). The objective of minimizing 

deviation from the status quo can be expressed as: 

 

𝑀𝑆𝑄(𝒚, 𝝉, 𝒗) = ∑ ∑|𝑠𝑤𝑡(𝒚, 𝝉, 𝒗) − 𝑠𝑤𝑡|𝜉

𝑤𝑡

  (4) 

 

The 𝜉 parameter is set by the analyst; typical values include 𝜉 = 2  and 𝜉 = 1.     
 Another meaningful goal is to find the minimum revenue generating area pricing scheme that satisfies 

the environmental constraints. For example, using the road flows (𝑥𝑗𝑡) for a particular time period 𝑡, a proxy 

of the total revenue generated represent can be formulated as: 

 

𝑀𝑅(𝒚, 𝝉, 𝒗) = ∑ 𝜏𝑗𝑥𝑗𝑡(𝒚, 𝝉, 𝒗)

𝑗

  (5) 

 

Alternatively, the decision-maker might be interested in generating a target level of revenue 𝑅𝑡𝑎𝑟𝑔𝑒𝑡, in 

which case the design objective could be to minimize the deviation between the revenue target and the 

revenue generated by the pricing scheme. This objective can be stated as: 

 

𝑀𝑅+(𝒚, 𝝉, 𝒗) = (𝑀𝑅(𝒚, 𝝉, 𝒗) − 𝑅𝑡𝑎𝑟𝑔𝑒𝑡)2 
 (6) 

 

3.1.4 Specification of Environmentally-Oriented Planning Objectives 

 

This work focuses on the effects of vehicle-generated air pollutants on the environment, and in particular 

on the detrimental human health outcomes caused by polluted environments. Note, however, that there are 

other types of pollution by-products of transportation activities, such as sound pollution. Additionally, given 

the public health dimension of this research, the models focus on emission and concentration of pollutants 

that have local effects, as opposed to the total emission of pollutants that have long-term, global effects 

(e.g., CO2).  

Yet, total emission measures can be a useful, albeit imperfect, proxy to the public health effects of 

vehicle-generated emissions. An average speed approach to computing link-level emissions is common in 

practice, especially in the context of regional analyses that depend on the outputs of static traffic assignment 

models. Let 𝑒𝑗 represent an emission factor (in units of grams of pollutants per unit of distance per vehicle) 

that is computed as function of the average speed on a link 𝑗 of length 𝑙𝑗, and let 𝑥𝑗 represent the vehicle 

flow on that link (which in turn is a factor that determines the average speed). Given this setup, total network 

emissions are computed by: 

 

𝐻𝐸(𝒚, 𝝉, 𝒗) = ∑ 𝑙𝑗
𝑗

𝑒𝑗(𝑥𝑗)𝑥𝑗(𝒚, 𝝉, 𝒗)  (7) 

 

A more direct proxy of health impacts of traffic emissions are pollutant exposure measures at the 

population level. In this type of measure, the level of exposure is assessed using average pollutant 

concentration levels 𝐶𝑟 (estimated at a point in time in the zones that constitute the study area) and the 

number of people linked to each zone 𝑟 (e.g., present in zone in the period). One alternative is using the 

population-level intake of vehicle emitted pollutants as a health impact proxy. Define 𝐵𝑔 as the breathing 

rate of group 𝜌𝑔 and 𝐶𝑔𝑟 as the pollutant concentration level to which members of group 𝑔 in zone 𝑟 are 

exposed to during the period of analysis. The population-level pollutant intake can be estimated using: 
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𝐻𝐼(𝒚, 𝝉, 𝒗) = ∑ ∑ 𝜌𝑔𝑟𝐵𝑔𝐶𝑔𝑟(𝒚, 𝝉, 𝒗)

𝑟𝑔

  (8) 

Note that pollutant intake can also be estimated at the agent-level (𝐼𝑧). For this computation the analyst 

would need to estimate the time-space path that each agent follows throughout the day, as well as the 

pollutant concentrations encountered by the agent. 

 Specific estimates of health impacts extend the preceding analysis by mapping exposure to a health 

response. For example, linear exposure-response functions can be used to estimate the years of life lost 

(YOLL) as a function of an exposure to particulate matter (PM2.5) (Rabl et al., 2014). Representing the 

slope of the linear exposure-response function as 𝑆𝑛 (units: YOLL/(person in group 𝑛 ×year× μg 

PM2.5/m3)) and the value of life as 𝑉𝐿 (units: $/YOLL), the health impact objective can be defined as: 

 

𝐻𝐿(𝒚, 𝝉, 𝒗) = 𝑉𝐿 ∑ 𝑆𝑛 (∑ 𝜌𝑛𝑟𝐶𝑛𝑟(𝒚, 𝝉, 𝒗)

𝑟

)

𝑛

  (9) 

 

The previous objectives are examples of measures of global efficiency; they are efficient from a 

utilitarian perspective in which the correct course of action is the one that results in the maximum benefit 

to society at large. An alternative perspective in environmentally-oriented planning is to ensure that there 

is an equitable distribution of benefits and costs for a given network intervention (e.g., a pricing scheme). 

In this study, environmental equity is considered in terms of the differences in pollutant exposure levels at 

the level of the individual. Following Levy et al. (2010), the level of inequality in pollutant exposure level 

can be quantified using the Atkinson index: 

𝐻𝐴(𝒚, 𝝉, 𝒗) = 1 − [
1

𝑍
∑ (

𝐼𝑧(𝒚, 𝝉, 𝒗)

𝐼(̅𝒚, 𝝉, 𝒗)
)

1−𝜀𝑍

𝑧=1
]

1
1−𝜀

 

 

 (10) 

where 𝑍 is the total number of agents, 𝐼 ̅ is the average pollutant intake, and 𝜀 is the Atkinson inequality 

aversion factor. At its extreme values, an 𝐻𝐴 equal to zero signifies complete equality in exposure levels, 

while an 𝐻𝐴 equal to one implies complete inequality. 

 

3.2 Lower-Level Model System 
 

Transportation analysts have several alternatives to model the travel response 𝒗 to pricing schemes, a 

response which could include changes in travel mode, routes, departure times, and activity participation 

and scheduling. This subsection discusses the basic features of the type of model systems necessary in the 

design of environmentally-oriented ACP schemes. In addition, the formulation of an activity-based travel 

demand model, tailored to this study, is presented, as well as a detailed description of the pollutant exposure 

model used in the project. 

 

3.2.1 Features of Lower Level Model System 

 

The public health effects of vehicle-generated pollutants strongly depend on the environment in which these 

pollutants are emitted and on the activity and travel behavior patterns of the population. Therefore, ideally, 

the response 𝒗 to a pricing scheme (𝒚, 𝝉) would be generated via an activity-based model (ABM), as it 

would produce the travel tours needed to quantify the level of exposure to pollutants in the population. The 

components of an activity-based model system for the analysis of ACP schemes is shown in Figure 1. In 

this model system, a series of activity patterns serve as inputs to an ABM that simulates the activity 



11 

 

participation and scheduling behavior of agents, as well as their mode choice. The agent-level trips are 

aggregated to the zonal level and then loaded to a traffic assignment model that assigns the travel flows to 

the transportation network. The network flows are then used to compute the traffic emissions, followed by 

the application of a pollutant concentration model to simulate the concentration of pollutants in the 

microenvironments encountered or occupied by the agents. Lastly, given the pollutant concentration levels 

and the agent travel tours, an estimate of the human exposure to pollutants is produced, which could in turn 

be converted into an estimate of the health costs (e.g., in terms of YOLL) associated with vehicle emissions.  

 Note that in the model system proposed in Figure 1 the ABM model is linked to a static traffic 

assignment model, a common linkage that reduces the run time of the model system relative to model 

systems that link ABM models with dynamic traffic assignment models (Castiglione et al., 2015). Given 

the aggregate output of the static assignment models, the emission and air dispersion models used to 

compute pollutant concentrations are also specified as static.  

 

 
Figure 1. Lower-level model system 

Even with a static assignment model, simulating the activity participation and scheduling patterns of 

millions of agents for a large metropolitan region could be time-consuming in the context of an optimization 

problem. For this type of situation, a second type of model system is presented in Figure 2 that can be used 

to analyze the effects of ACP schemes. In this case, a standard sequential planning model (e.g., the four-

step model) supplants the ABM in the process of predicting travel demand and estimating the travel flows 

in the network. The travel time and cost outputs of the sequential planning model then serves as input to an 

ABM that simulates the activity participation and scheduling behavior of a sample of agents (in contrast to 

the total population of the region). The travel and activity schedule of the agents, in conjunction with the 

predicted pollutant concentrations, are then used to compute a sample-based measure of the pollutant 

exposure experienced by people in the community 

 

 
Figure 2. Simplified lower-lever model system 

Note that the two model systems presented so far are applicable to the bi-objective problem that 

considers and environmentally-oriented objective 𝐻 that depends on the outputs of ABMs. For the single-
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objective problem (Problem 1) where pollutant concentrations are the only concern environmental concern, 

the ABM and its related components would be removed from the lower-level model system.   

  

3.2.2 The Household Activity Pattern Problem 

 

The Household Activity Pattern Problem (HAPP) was used in this project as the framework to analyze the 

activity engagement behavior of the population, where activities are scheduled and planned using a 

network-based model. HAPP is a pick-up and delivery problem with time windows. In its context, each 

activity is considered as an object which needs to be executed (pick-up) at a location at a certain time and 

the person, after finishing each activity, may return to home (drop off) and then depart for the next activity 

location. In its original from, HAPP covers only one mode of transportation and it also uses one travel time 

matrix in its network modeling. In this project, one of the main objectives of the research is to evaluate the 

impacts of pricing on mobility behavior, as well as the overall performance of the policy in mitigating the 

externalities caused by traffic. To address this objective two changes were made to the HAPP. First, transit 

mode was integrated into the formulation, and second, different travel time matrixes to model behavior at 

different periods of the day were incorporated in the model. The HAPP objective function was set to 

minimize the total disutility of travel, defined as a combination of travel cost and travel time, and to 

minimize the deviation of the new activity itinerary for the original one that the person has performed 

according to the observed pattern. Activities are categorized into two sets: ‘flexible’ and ‘fixed’ sets of 

activities. Fixed activities, such as attending school or going to work, have a fixed location to be executed 

and are assumed to have fixed schedule (duration, start time, and end time). The flexible activities can be 

modified depending on the travel time matrix and the cost of travel to the location of the activity. Individuals 

can cancel, reschedule and relocate the activity. As an example, a trip to the grocery store during the day 

which would incur in a toll can be substituted by a stop in another grocery store outside of the tolled area 

or it can be performed in the evening when the pricing is inactive. Figure 3 depicts the possible changes 

that agents might apply to their travel agendas in response to the pricing policy.  

 

 
Figure 3. Example of activity pattern. Presents activity plan of 2 persons in the dimension of time and space. Person 1 

relocates his shopping activity to another place once zone 2 is defined a cordon area  
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3.2.2.1  HAPP Formulation 

The objective function of the core HAPP model consists of two terms: (i) minimizing the total 

travel cost and travel time and (ii) minimizing the deviation from the observed schedule and 

itinerary of the traveler. The proposed model is subject to the following constraints:  

 Vehicle routing constraints:  

Meaning that each fixed activity should be performed in its location by either of the modes that 

results in the highest utility. Also, each trip destined to a location by a specific mode has a 

corresponding trip departing from the same location with the same mode (conservation law). For 

flexible activities this constrained is relaxed since the activity has the cancelation option.  

 Time windows constraints:  
 

These are a set of equations mandating the opening hours and closing hours of the activities and 

the time associated with the activity start time and sequencing. For instance, attendance to school 

cannot start outside school hours. Additionally, if an activity is followed by another activity, the 

second activity cannot start prior to the end of the first activity and the time required to travel from 

the location of first activity to the second one.  

In order to take into account the impacts of different modes of transportation and peak hour, 

the following set of equations are included in the model. It is assumed that the variations in the 

travel time can be summarized by three travel time matrixes: morning peak hour, afternoon peak 

hour, and non-peak hours. Therefore, three time slices are defined in this study.  These time slices 

are defined by variable 𝑠𝑐. 𝜆𝑖,𝑠𝑐
𝑣ℎ is a binary variable which takes the value of 1 if the trip using mode 

ℎ serving node 𝑖  in time slice 𝑠𝑐, and zero otherwise. Assuming 𝑇 represents arrival time to each 

location,  𝜆𝑖,𝑠𝑐
ℎ  is related to  𝑇𝑖

ℎ  through  𝛾𝑖,𝑠𝑐
ℎ , which is a real variable in the range of [0,1] and is 

bounded by 𝜆𝑖,𝑠𝑐
ℎ and 𝜆𝑖,𝑠𝑐−1

ℎ  as described in equation 11.2. 𝑏𝑠𝑐 refers to the vector of time slice 

boundaries. Say if the morning rush period is from 7 to 9 and evening peak period is from 16 to 18, 

then the elements of vector b are [0,7,9,16,18,24]. The HAPP formulation is then extended with 

the following constraints. 

  

∑ ∑ 𝑏𝑠𝑐 × 𝛾𝑖,𝑠𝑐
ℎ

𝑠𝑐ℎ

= 𝑇𝑖
ℎ  , ∀𝑖 ∈ 𝑁 

 (11.1) 

𝛾
𝑖,𝑠𝑐
ℎ ≤  𝜆𝑖,𝑠𝑐

ℎ + 𝜆𝑖,𝑠𝑐−1
ℎ ,   ∀𝑖 ∈ 𝑁, 𝑠𝑐𝜖Λ  (11.2) 

∑ 𝛾𝑖,𝑠𝑐
ℎ

𝑠𝑐

= 1, ∀𝑖 ∈ 𝑁 
 (11.3) 

∑ 𝜆𝑖,𝑠𝑐
ℎ

𝑠𝑐

= 1, ∀𝑖 ∈ 𝑁 
 (11.4) 

vh
uwt 𝑡𝑡𝑖,𝑗

𝑣ℎ = ∑ 𝛾𝑖,𝑠𝑐
𝑣ℎ

𝜏𝜖Λ

. (𝑡𝑖,𝑗
𝑣ℎ)

𝑠𝑐

 
 (11.5) 

0 ≤ 𝛾𝑖,𝑠𝑐
ℎ ≤ 1  (11.6) 

𝜆𝑠𝑐,𝑖 ∈ {0,1}, 𝑇𝑖,𝑢 ≥ 0  (11.7) 
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3.2.3 Modeling Human Exposure to Pollutants 

 

The tours generated by the ABM enables the estimation of pollutant exposure at the individual-level (as 

opposed to the population-level). An agent 𝑧’s intake of air pollutants 𝐼𝑧 during a day depends on the 

activities undertaken by the agent, the duration of the activity, and the pollutant concentration encountered 

in each location, among other factors. Intake 𝐼𝑧 can be disaggregated into the agent’s pollutant intake while 

stationary at a location (𝐼𝑧̇) (e.g., home, office) and the agent’s pollutant intake while moving from one 

location to another (𝐼𝑧) (e.g., going from home to work). 𝐼𝑧 is computed as: 

   

𝐼𝑧 = 𝐼𝑧̇ + 𝐼𝑧  (12) 

 

Let 𝑚 be a microenvironment visited by person 𝑧 for a duration 𝛿𝑧𝑚. The concentration at 𝑚 can be 

computed as 𝐶0𝑚𝑡 + 𝑓𝑚 × 𝐶𝑚𝑡, where 𝐶0𝑚𝑡 represents the indoor pollution levels at 𝑚 and time 𝑡, and 𝑓𝑚 

is a pollutant infiltration factor that maps the outdoor concentration 𝐶𝑚𝑡 to an indoor concentration. For 

simplicity, the term 𝐶0𝑚𝑡 is set to zero in this project. Assuming a constant breathing rate 𝐵𝑧 throughout the 

day, 𝐼𝑧̇ is the sum of the pollutants inhaled by the agents in all microenvironments visited: 
 

𝐼𝑧̇ = 𝐵𝑧 ∑ 𝛿𝑧𝑚 × 𝑓𝑚 × 𝐶𝑚𝑡

𝑚

 
 

 

 

(13) 

The agents’ travel paths and modes used in those paths are required to compute the value of 𝐼𝑧. Assume 

that an agent’s path 𝜚 via mode ℎ can be decomposed into a series of links 𝑗, each link with average pollutant 

concentration 𝐶𝑗𝑡 at time period 𝑡. The average travel time on link 𝑗 is computed by 𝑙𝑗/𝜈𝑗, where 𝜈𝑗 is the 

average travel speed on link 𝑗. Given this notation, the agent’s pollutant intake in path 𝜚 via mode ℎ can be 

estimated by: 

 

𝐼𝑧ℎ𝜚 = 𝐵𝑧 ∑
𝑙𝑗

𝑣𝑗
× 𝑓ℎ𝑗 × 𝐶𝑗𝑡

𝑗

  (14) 

 

𝑓ℎ𝑗 is the pollutant infiltration factor for the mode ℎ in link 𝑗. 𝐼𝑧 is estimated by adding all paths’ 𝐼𝑧ℎ𝜚:   

 

𝐼𝑧 = ∑ ∑ 𝐼𝑧ℎ𝜚

𝜚ℎ

  (15) 

 

3.3 Heuristics for Solving Area Pricing Problems  
 

The formulations of a single- and bi-objective ACP design problems were presented in Section 3.1. As 

discussed in Section 2.2, there are at least five heuristics in the literature to solve single-objective ACP 

design problems. In this section, two new surrogate-based solution heuristics (SBSH) are proposed: one for 

the single-objective problem and the other for the bi-objective problem, which could generally be used for 

multi-objective problems. Both heuristics employ surrogate-based optimization techniques, use a geometric 

representation of the charging boundary, and control for the final shape of the charging boundary. This 

section is divided into four main subsections. The first two subsections explain how the surrogate models 

are fitted and used, and how the charging boundaries are represented. The last two subsections describe the 

two solution heuristics. 
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3.3.1 Fitting and Using Surrogate Models 

 

As previously mentioned, a surrogate model is a function that can be quickly evaluated by a computer to 

produce an approximation to a model that takes considerable time to run. The computationally expensive 

model takes as input a set of variables 𝑿 and it produces an output 𝑌. Generally, the surrogate models would 

also take as input a set of variables 𝑿 (or a subset or product of those variables) to produce an estimate 𝑌̂ 

of the output of the computationally expensive model. In the context of this work, the variables 𝑿 would 

represent the features that define the charging scheme (i.e., the boundary and toll), and the output 𝑌 could 

be the value of a planning objective function or pollutant concentration constraint function, both of which 

require computationally expensive computer models for their evaluation. As it will be shown in the next 

sections, the proposed heuristics screen for the best designs from a pool of thousands of candidates based 

on the surrogate model predictions for each candidate. 

 An initial set of runs of the computationally expensive models is needed to fit the surrogates. That is, 

an initial set of designs {𝑿1, 𝑿2, … , 𝑿𝑛0
} is evaluated via the time-consuming models to produce a set of 

outputs {𝑌1, 𝑌2, … , 𝑌𝑛0
}. Then the surrogate models are fitted using the (𝑿, 𝒀) pairs as data samples; 𝑿 are 

the independent variables used to predict the dependent variable 𝒀. As the heuristics select new designs and 

evaluate them via the computationally expensive models, new (𝑿, 𝒀) pairs are generated and the surrogate 

models are updated. Naturally, the procedures used to fit the surrogate models will depend on the type of 

surrogate model used. Commonly used surrogate model types include polynomial regression models, radial 

basis functions, and kriging (see Forester and Keane, 2009). Any of these and other surrogate model types 

can be employed in the heuristics presented next. 

 

3.3.2 Representing the Charging Area  

 

In this study charging areas are represented using geometric shapes. Zones that are within the space 

enclosed by a geometric shape are part of the charging area, while those that are outside the shape are not 

part of the area. A geometric representation is used as it can, relative to other types of representation, 

represent complex boundary shapes with minimal information. As the location of the boundary is a decision 

variable, the way this information is encoded determines how many initial candidate charging schemes (i.e., 

design solutions) need to be evaluated with the computational costly models prior to estimating useful 

surrogate models. As previously discussed, a surrogate model 𝑠 is fitted using the information of a set of 

(𝒚𝑛, 𝜏𝑛) solutions (i.e., 𝑿𝑛 = (𝒚𝑛, 𝜏𝑛)) as independent variables, and an output of the computationally 

expensive models (e.g., 𝑌𝑛 = 𝑀𝑛(𝒚𝑛, 𝜏𝑛)) as dependent variable. So, besides creating a harder 

optimization problem to solve, more decision variables mean more computational time before the surrogate 

models can be estimated or, more fundamentally, before they can be used to provide accurate function 

predictions (as in any data-based prediction model, more data results in a better trained surrogate model). 

Hence the need for data efficient representations of charging boundaries in the context of surrogate-based 

optimization. 

 The drawback of geometric representation is that it is possible for different shapes to contain the same 

zones, and therefore represent the same charging area. For this reason, in the proposed algorithm the 

geometric shapes are mapped into the charging area representation proposed by Zhang and Yang (2004). 

In their algorithm, the charging area is represented by a binary vector 𝜼 of length equal to the number of 

graph nodes that can be within the charging area. Each element of  𝜼 is a binary variable that indicates if a 

node is in the charging area. 𝜼 is used to define which network links must be tolled. Besides being useful 

for determining the uniqueness of the geometric shapes used in the SBSH, 𝜼 is used, along with the cut-set 

concept, to determine whether the geometric shape forms a closed boundary. The 𝜼 representation could 

technically be used directly to estimate surrogate models (i.e., 𝑠(𝜼, 𝝉)). However, the relatively large 

number of decision variables resulting from the 𝜼 representation (including the toll, |𝜼| + 1 variables) 
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would likely make the estimation and use of surrogate models an impractical task, for the reasons previously 

discussed.  

Here the charging area boundaries are represented using simple polygons, which are defined by an 

ordered collection of 𝑝 vertices (see Figure 4). Let 𝑷 = {(𝑟𝑖, 𝜃𝑖): 𝑖 = 1, … , 𝑝} represent the collection of 

vertices that define a charging boundary, where 𝑟𝑖 and 𝜃𝑖 are the polar coordinates of the vertex 𝑖 relative 

to a reference point 𝑂 that is treated as the anchor of the charging area. Other types of geometric shapes 

could be used, but simple polygons are attractive because they are economical; the polygon is completely 

specified by the vertices without the need for additional parameters. Associated to each polygon boundary 

are 2𝑝 + 1 decision variables (the vertex coordinates and the toll).  

 

 
Figure 4. Simple polygon representation of charging boundary 

Note that in the proposed algorithm, 𝑷 maps to 𝜼 and 𝜼 maps to 𝒚. It is the polygon and toll 

information, however, that is used to predict the objective function and the concentration constraint values. 

For example, the expected mobility objective value 𝑀̂ of a candidate solution 𝑘 is predicted using 𝑀̂ =

𝑠𝑀(𝑷𝑘, 𝜏𝑘), where the surrogate model 𝑠𝑀 is trained using previously evaluated (𝑷0, 𝜏0, 𝑀0) data points.  

 

3.3.3 SBSH for Single-Objective Area Pricing Design Problems 

 

The SBSH for the single-objective design problem (SBSH-SP) follows the general logic of the metric 

stochastic response surface algorithms proposed by Regis and Shoemaker (2007). An initial population of 

𝑛 polygons and tolls is generated and evaluated with the computationally expensive models. The resulting 

data points {(𝑷𝒋, 𝜏𝑗, 𝑀𝑗)} are used to estimate the surrogate model 𝑠. In each iteration, five groups of 

candidate points are generated according to different set of rules (explained in the next section), and, among 

thousands of candidates, a candidate is selected for each group. This selection is partly made based on the 

surrogate model’s prediction of each candidate’s objective function value. The surrogate model 𝑠 is updated 

after each iteration as new information (i.e., new data points (𝑷𝒋, 𝜏𝑗, 𝑀𝑗)) is learned. 

 The next subsections describe: (a) the constraint handling procedures used in SBSH-SP, (b) the criteria 

used to select the most promising candidate solutions, (c) the strategies used to generate the candidate 

solutions, and (d) the steps of the heuristics. 

 

3.3.3.1 Constraint Handling Methods 

 

Two versions of the SBSH-SP are proposed. These versions differ in the way that they handle the pollutant 

concentration constraint. The first version employs a penalty approach (Deb, 2000). From the minimization 
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perspective, let  𝐹𝑚𝑎𝑥 be the objective function value of the worst known feasible solution, and 𝜅 be a 

penalty factor. Problem 1’s objective function is restated (arguments omitted) as: 

 

𝐹̃ = {
𝐹 𝑖𝑓 𝐶𝑟 ≤ 𝐶𝑚𝑎𝑥    ∀𝑟

𝐹𝑚𝑎𝑥 + 𝜅 × (max
𝑟

(𝐶𝑟) − 𝐶𝑚𝑎𝑥) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (16) 

 

where 𝐹 represent the objective function value (e.g., the 𝑀 function in Problem 1). 𝐹𝑚𝑎𝑥 is updated as 

worse feasible solutions are discovered. If there is no known feasible solution (an unlikely occurrence if a 

high enough toll is contemplated as an option), a placeholder value is assumed for 𝐹𝑚𝑎𝑥. This version of 

the SBSH-SP is identified as SBSH-SP-P. 

 The second version of the SBSH-SP handles constraint by using a surrogate model 𝑠𝐶 to predict the 

value of function: 

 

𝑐̃𝑚𝑎𝑥 = max
𝑟

(𝐶𝑟)  (17) 

 

The maximum pollutant concentration level of a candidate design is predicted using surrogate 𝑠𝐶; if the 

prediction is greater than 𝐶𝑚𝑎𝑥, then the candidate is removed as it is likely to be an infeasible solution. 

This version of the SBSH-SP is identified as SBSH-SP-S. 

 

3.3.3.2 Selection Criteria for Identifying Most Promising Solutions 

 

In each iteration of the SBSH-SP a set of candidate solutions is generated according to five sets of rules 

(i.e., five groups of candidate solutions are generated). In each group, each candidate is given a score 𝑊 

that is computed based on its predicted objective function value (surrogate score 𝑈𝑅𝑆), a measure of each 

candidate’s distance to previously evaluated points (distance score 𝑈𝐷), and weights 𝑤𝑅𝑆 and 𝑤𝐷 

corresponding to these two criterions (𝑤𝑅𝑆 + 𝑤𝐷 = 1). The score is computed by 𝑊 = 𝑤𝑅𝑆𝑈𝑅𝑆 + 𝑤𝐷𝑈𝐷. 

The candidates with the lowest 𝑊 score are selected. For a candidate scheme (𝑷𝑘 , 𝜏𝑘), the score 

𝑈𝑅𝑆,𝑘(𝑷𝑘, 𝜏𝑘) is computed using: 

 

𝑈𝑅𝑆,𝑘(𝑷𝑘, 𝜏𝑘) =
𝑠(𝑷𝑘 , 𝜏𝑘) − 𝑠𝑚𝑖𝑛 

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
 

 (18) 

 

where  𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are the minimum and maximum predicted objective function values, respectively, 

among the candidate solutions of each group. If 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 are equal, then 𝑈𝑅𝑆(𝑷𝑘, 𝜏𝑘) = 1.  

The purpose of the distance criterion score 𝑈𝐷 is to measure how different a candidate solution is from 

previously evaluated solutions. Given that multiple polygons can result in the same charging zone (in terms 

of which nodes are within the charging area), the distance criterion is computed using the 𝜼 mapping of 

each polygon. The minimum distance Δ(𝜼𝑘 , 𝜏𝑘) between candidate (𝜼𝑘 , 𝜏𝑘) and the previously 𝑛 evaluated 

schemes is computed along with the related minimum (∆𝑚𝑖𝑛= min
1≤𝑘≤𝑛

{∆(𝜼𝑘, 𝜏𝑘)}) and maximum 

(∆𝑚𝑎𝑥= max
1≤𝑘≤𝑛

{∆(𝜼𝑘 , 𝜏𝑘)}) distances. Score 𝑈𝐷,𝑘(𝜼𝑘 , 𝜏𝑘) is calculated using: 

 

𝑉𝐷(𝜼𝑘 , 𝜏𝑘) =
Δ𝑚𝑎𝑥 − ∆(𝜼𝑘 , 𝜏𝑘)

Δ𝑚𝑎𝑥 − Δ𝑚𝑖𝑛 
 

 (19) 

 

Again, if ∆𝑚𝑖𝑛 equals ∆𝑚𝑎𝑥, then 𝑉𝑛
𝑑𝑖𝑠𝑡(𝝉𝑚) = 1. The weight of each criterion (𝑤𝑅𝑆 and 𝑤𝐷) is cyclically 

adjusted in each iteration. For this purpose, an ordered set Υ = 〈𝑣1, … , 𝑣𝜅〉 (0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝜅 ≤ 1) is 
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defined; with each iteration 𝑤𝑅𝑆 is sequentially assigned a value from Υ. The purpose of adjusting the 

weights in this manner is to alternate between exploitative and explorative search. 

The selected solutions are evaluated with the computationally expensive models. The information of 

the evaluated candidates is stored in data archives that are used to re-estimate the surrogate model at the 

start of each iteration, as previously mentioned. An additional data archive is used to store the best known 

charging area scheme (i.e., the feasible solution with lowest objective function value). This best-known 

solution is used in the generation of candidates. 

 

3.3.3.3 Procedures to Generate Candidate Solutions in SBSH-SP 

 

Five candidate solution groups are generated in each iteration of SHSB-SP. The first three candidate groups 

are created using information from the best known charging area boundary 𝑷𝒃𝒆𝒔𝒕 = {𝒓𝒃𝒆𝒔𝒕, 𝜽𝒃𝒆𝒔𝒕}. The first 

group of candidates (type I) share the boundary 𝑷𝒃𝒆𝒔𝒕, but differ in their toll level 𝜏𝑘. The number of type 

I candidates, 𝐷𝐼, depends on how many of 𝑷𝒃𝒆𝒔𝒕 possible toll values have been evaluated. In the unlikely 

case that all tolls are evaluated for 𝑷𝒃𝒆𝒔𝒕, the analyst could decide to simply stop producing type I candidates 

or switch the 𝑷𝒃𝒆𝒔𝒕 information with data from another feasible solution (e.g., the second best known 

solution). In the heuristic implemented for the numerical tests, a reduced toll set was generated in the 

interval [𝜏𝑏𝑒𝑠𝑡 − 𝜀, 𝜏𝑏𝑒𝑠𝑡 + 𝜀], and the most promising toll was selected from this set.    

 In the second group of candidates (type II), 𝐷𝐼𝐼 charging area boundaries are generated adjusting the 

𝑷𝒃𝒆𝒔𝒕 boundary while keeping the radii and toll level fixed. Three strategies are used to adjust the radii: 

expansion, contraction, or expansion and contraction. With probability Γ𝑈 , the expansions are made 

uniformly according to 𝑟𝑗
𝑘,𝐼𝐼 = (1 + 𝜔) × 𝑟𝑗

𝑏𝑒𝑠𝑡, where 𝜔 is a randomly generated number obtained from 

the interval [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]. Similarly, in boundary contractions the radii are uniformly adjusted using 

𝑟𝑗
𝑘,𝐼𝐼 = (1 − 𝜔) × 𝑟𝑗

𝑏𝑒𝑠𝑡 with probability Γ𝑈. For expansion and contraction candidates a radius 𝑗 is selected 

and the radii before 𝑗 are uniformly expanded while the radii from 𝑗 are contracted, or vice versa (with equal 

probability). With probability 1 − Γ𝑈, the same procedure as the one previously described in applied, but 

with distinct 𝜔 factors (i.e., non-uniform expansion, contraction, or contraction and expansion with 

individual 𝜔𝑗 random number). For the expansion and contraction candidates, the radii are adjusted using 

𝑟𝑘,𝐼𝐼 = 𝑟𝑗
𝑏𝑒𝑠𝑡(1 + 𝑏𝜔𝑗), where 𝑏 is a random variable that can assume the values of -1 and 1 with equal 

probability. The heuristic keeps track of the adjustment strategy used in each iteration. When a candidate 

is found that is better than the current 𝑷𝒃𝒆𝒔𝒕, the next iteration uses the same strategy that resulted in the 

successful candidate. For example, if the current 𝑷𝒃𝒆𝒔𝒕 was bested by an expansion candidate, the next type 

II candidates will be generated using an expansion adjustment (the boundary will keep expanding).  

The radii and the angles are adjusted in the third group of candidate solutions (type III). Two radii 

adjustment modalities are utilized: coordinated and uncoordinated adjustments.  The uncoordinated radii 

adjustments use the same formulas as the ones discussed for type II candidates. In the coordinated 

operations the radii perturbations are coordinated around a randomly selected focal vertex 𝑗. Vertex 𝑗 is 

assigned the largest radius length perturbation Δ = 𝜔𝑑𝑚𝑎𝑥, where 𝑑𝑚𝑎𝑥 is the maximum vertex 

displacement allowed. In a controlled expansion, vertex 𝑗 is moved by 𝑟𝑗
𝑘,𝐼𝐼𝐼 = 𝑟𝑗

𝑏𝑒𝑠𝑡 + Δ, and in a 

contraction by 𝑟𝑗
𝑘,𝐼𝐼𝐼 = 𝑟𝑗

𝑏𝑒𝑠𝑡 − Δ. The neighboring vertices (𝑗 − 1 and 𝑗 + 1) are perturbed by a percent 𝛿 

of Δ. The percent 𝛿𝑗+1 (or 𝛿𝑗−1) is computed recursively using max(0, 𝛿𝑗 − 𝜔𝛿), where 𝜔𝛿 is a randomly 

generated number in the interval [𝜔𝛿,𝑚𝑖𝑛,𝜔𝛿,𝑚𝑎𝑥] and the initial 𝛿𝑗 is set to 1. The percent for 𝑗 + 2 is 

max(0, 𝛿𝑗+1 − 𝜔𝛿), and so on. Then, the controlled expansion for vertex 𝑖 ≠ 𝑗  is 𝑟𝑖
𝑘,𝐼𝐼𝐼 = 𝑟𝑖

𝑏𝑒𝑠𝑡 + 𝛿𝑖Δ and 

the controlled contraction 𝑟𝑖
𝑘,𝐼𝐼𝐼 = 𝑟𝑖

𝑏𝑒𝑠𝑡 − 𝛿𝑖Δ. For controlled expansion and contraction operations two 

focal points are selected, one for expansion and one for contraction, and the previous procedure is followed. 

Vertex radii are expanded or contracted according to the closest focal point (in the vertex sequence, not 

spatially). The vertex equidistant to the expansion and contraction focal points is perturbed by taking an 
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average of the contraction and expansion perturbations. For all operations, 𝐷𝐼𝐼𝐼 boundaries are generated, 

half of which are produced using the coordinated adjustment procedures, and the other half using the 

uncoordinated procedures. Each type III boundary is replicated |𝜏| and assigned a unique toll level from the 

set 𝜏 = {𝜏𝑚𝑖𝑛, … , 𝜏𝑚𝑎𝑥}. In both coordinated and uncoordinated operations, the vertex angle 𝜃𝑗
𝑘,𝐼𝐼𝐼

 is 

generate with the formula 𝜃𝑗
𝑚,𝐼𝐼𝐼 = 𝜃𝑗

𝑏𝑒𝑠𝑡 + 𝜑, where 𝜑 is a random number drawn from a normal 

distribution with zero mean and variance 𝜎2. 

The fourth set of candidates are generated using GA operators. 𝐷𝐼𝑉 candidates are generated by 

selecting two parents from the pool of evaluated solutions. With equal probability, a one-point or two-point 

crossover operation is performed with the parent’s vertex information. Four strategies are applied for the 

one-point crossover modality: a) the same crossover point (i.e., vertex) is applied to swap the radii and 

angle information between the parents, b) one crossover point is used to swap the radii information and a 

different point is used to swap the angles, c) the one-point crossover swap is performed only for the radii, 

or d) the one-point crossover swap is performed only for the angles. With equal probability, one of these 

strategies was used to generate each of the 𝐷𝐼𝑉 candidates. With probability Γ𝑚𝑢𝑡, a radii was mutated by 

applying either an expansion or a contraction factor as discussed for type II candidates. For the two-point 

crossover operations the same steps are followed, with the added detail that two crossover points are 

selected. Like in the case of type III solutions, each type IV boundary is replicated |𝜏| times and assigned 

a unique toll from the set 𝜏 = {𝜏𝑚𝑖𝑛, … , 𝜏𝑚𝑎𝑥}. A distinct set ΥGA was used to weigh the criterions used to 

select the most promising solution from the type IV candidates. 

 The last group of candidates is randomly generated. An anchoring radii length is 𝑟𝑚𝑉 is generated in 

the interval [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]. Then each radius is set according to  𝑟𝑗
𝑚𝑉 = 𝑟𝑚𝑉(1 + 𝑏𝜔𝑗). The angles are 

initially set so that the vertices are equidistant (resulting in an ordered sequence {𝜃1
𝑉, … , 𝜃𝑗

𝑉, … , 𝜃𝑃
𝑉}), and 

then each angle is perturbed using 𝜃𝑗
𝑚,𝑉 = 𝜃𝑗

𝑉 + 𝜑. Once again, the 𝑀𝑉 boundaries are replicated |𝜏| times 

and assigned a unique toll from the set 𝜏 = {𝜏𝑚𝑖𝑛, … , 𝜏𝑚𝑎𝑥}. 

 Note that the rules that define IV and V candidates are meant to prevent the algorithm from being 

trapped in a particular (𝑷𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡) solution. As another safeguard against this potential problem, the 

heuristic keeps track of the number of candidate evaluations performed via a computationally expensive 

models without an improvement upon (𝑷𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡) (i.e., the number of failures, stored in counter 𝐺𝑓𝑎𝑖𝑙). 

If the number of failures exceeds a threshold 𝐺𝑚𝑎𝑥,𝑓𝑎𝑖𝑙, (𝑷
𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡) is supplanted in groups I, II, and III, 

by the next best solution that does not share the 𝑷𝑏𝑒𝑠𝑡 boundary, and the failure counter 𝐺𝑓𝑎𝑖𝑙 is reset to 

zero. Also, 𝐺𝑓𝑎𝑖𝑙 is reset when a candidate solution is discovered that bests (𝑷𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡) solution. The 

objective of this procedure is to continually move the focus of the type I, II, and III procedures away from 

exploring a solution space that is not yielding superior solutions. 

Before a candidate 𝑘 is given a score 𝑊, it must pass five feasibility checks. The polygon 𝑷𝒌 must be 

a simple polygon (i.e., composed of non-intersecting line segments), as intersecting polygons generally 

have no practical meaning. If the polygon is simple, it is then checked that its transformation to 𝜼𝑘, along 

with its toll 𝜏𝑘, have not been previously evaluated. Additionally, the 𝜼𝑘 transformation must meet the 

cutset criterion used by Zhang and Yang (2004), which ensures that the polygon creates a closed boundary.  

The polygon shape must also meet the convexity criterion (Maruyama et al., 2014), and, the angle between 

three contiguous polygon vertices (𝑗 − 1, 𝑗, 𝑗 + 1) must not be less than 𝜚. The last three conditions are the 

shape constraints that define the requirements for set θ (in constraints 1.5 and 2.5). In the case of SBSH-

SP-S, the candidates that are predicted to be infeasible by the surrogate 𝑠𝐶 are also eliminated. 

 

3.3.3.4 SBSH-SP steps 

 

The algorithm steps and the notation used in the description of SBSH-SP are presented next. 
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Decision variables 

 

𝜏 : charging zone toll level 

𝑷 : vertices defining changing zone boundary 

 

Indices 

 

𝑘 : indices for candidate solution vectors generated according to the rules of groups I 

through V 

𝑢 : indices for the five candidate solutions selected for evaluation (𝑢 = I, II, III, IV, V) 

𝑗 : indices for solutions that were evaluated with the models (𝑗 = 1, … , 𝑛) 

 

Counters 

 

𝑛 : counter for the number model runs 

𝐺𝑓𝑎𝑖𝑙 : counter for number of failures in improving upon best known solution 

 

Functions 

 

𝑀(∙) : objective function  

𝑀̃(∙) : penalty-adjusted objective function 

𝑐̃𝑚𝑎𝑥(∙) : max
𝑟

[𝐶𝑟(𝑷𝑘 , 𝜏𝑘)] 

𝑠𝑀(∙) : surrogate model for objective function 

𝑠𝐶(∙) : Surrogate model for 𝑐̃𝑚𝑎𝑥 

𝑊(∙) : weighted candidate score  

𝜒 : function that indicates if a feasible solution was found 

𝜇 : function that indicates if 𝑀𝑚𝑎𝑥 was updated 

 

Parameters 

 

𝑛0 : initial number of evaluated solutions 

𝑛𝑚𝑎𝑥 : maximum value for 𝑛  

𝐺𝑚𝑎𝑥,𝑓𝑎𝑖𝑙 : threshold for counter 𝐺𝑓𝑎𝑖𝑙 

 

Sets 

 

Τ : set for 𝜏 values 

Ρ : set for 𝑷 values 

Λ : set for M(∙) values 

Ψ : set for 𝑐̃𝑚𝑎𝑥 values 

Ω : set for 𝑀̃(∙) values (for SBSH-SP-P) 

 

Algorithm Steps 

 

1. Initialization: 

1.1. Set 𝑛 = 𝑛0 and 𝐺𝑓𝑎𝑖𝑙 = 0. 

1.2. Generate 𝑛 initial candidates (𝑷𝑗, 𝜏𝑗). 
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1.3. Add vectors 𝑷𝑗 and 𝜏𝑗 to P and Τ, respectively, and initiate Λ , Ψ, and (for SBSH-SP-P) Ω as 

empty sets. 

2. Evaluate initial candidates and select initial best solution: 

2.1. For each candidate (𝑷𝑗, 𝜏𝑗), compute 𝑀(𝑷𝑗, 𝜏𝑗) and 𝑐̃𝑚𝑎𝑥(𝑷𝑗, 𝜏𝑗), and add values to Λ and Ψ. 

2.2. If there are feasible solutions according to the 𝑐̃𝑚𝑎𝑥 (𝑷𝑗, 𝜏𝑗)  values, the 𝑷𝑗 and 𝜏𝑗 vectors for the 

candidate with the lowest 𝑀(𝑷𝑗 , 𝜏𝑗) are labeled 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡, respectively, and the objective 

value is labeled 𝑀𝑏𝑒𝑠𝑡.  

2.2.1 For SBSH-SP-P: the highest feasible 𝑀(𝑷𝑗, 𝜏𝑗) is labeled 𝑀𝑚𝑎𝑥, and 𝜒 = 1. Otherwise, if there 

are no feasible solutions, 𝑀𝑏𝑒𝑠𝑡, 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡 are assigned the values of the candidate with the 

lowest 𝑐̃𝑚𝑎𝑥(𝑷𝑗, 𝜏𝑗), value, 𝑀𝑚𝑎𝑥 is assigned a placeholder value, and 𝜒 = 0.  

For SBSH-SP-S: if there are no feasible solutions, 𝑀𝑏𝑒𝑠𝑡, 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡 are assigned the values 

of the candidate with the lowest 𝑐̃𝑚𝑎𝑥(𝑷𝑗, 𝜏𝑗). 

2.2.2 For SBSH-SP-P: For each initial point, compute 𝑀̃(𝑷𝒋, 𝜏𝑗) and add values to Ω. 

3. Fit surrogate model 𝑠. 

3.1 For SBSH-SP-P: Use information in P, Τ and Ω to fit surrogate model 𝑠𝑀. 

For SBSH-SP-S: Use information in P, Τ and Λ to fit surrogate model 𝑠𝑀. Also, fit surrogate 

model 𝑠𝐶 using information in P, Τ and Ψ. 

4. Candidate point generation and selection:  

4.1. Generate candidates according to the rules of groups I through V. 

4.1.1 Eliminate candidates that do not pass the feasibility checks. 

4.1.2 For SBSH-SP-S: Eliminate candidates that are predicted to be infeasible according to 𝑠𝐶 

4.2. For each group and each candidate 𝑘, compute 𝑊(𝑷𝑘 , 𝜏𝑘) using 𝑠𝑀. 

4.3. For each candidate group, select for model evaluation the candidate solutions with 

minimum 𝑊(𝑷𝑘 , 𝜏𝑘).  

5. Candidate evaluation and updates of parameters and archives: 

5.1. Evaluate the five selected candidates 𝑢 with the computationally expensive models to determine 

𝑀(𝑷𝒖, 𝜏𝑢) and 𝑐̃𝑚𝑎𝑥(𝑷𝒖, 𝜏𝑢).  

5.2 If a feasible candidate 𝑀(𝑷∗𝒖, 𝜏∗𝑢) is better than  𝑀𝑏𝑒𝑠𝑡, or if there were no feasible solutions, 

set  𝑀𝑏𝑒𝑠𝑡 = 𝑀(𝑷∗𝒖, 𝜏∗𝑢), 𝑷𝒃𝒆𝒔𝒕 = 𝑷∗𝒖, 𝜏𝑏𝑒𝑠𝑡 = 𝜏∗𝑢, and 𝐺𝑓𝑎𝑖𝑙 = 0. Otherwise, 𝐺𝑓𝑎𝑖𝑙 ≔ 𝐺𝑓𝑎𝑖𝑙 +

1. 

5.2.1 For SBSH-SP-P: Update 𝑀𝑚𝑎𝑥 if possible: If 𝜒 = 1 and there is a feasible candidate 𝑢 

with 𝑀(𝑷𝒖, 𝝉𝑢) > 𝑀𝑚𝑎𝑥, then 𝑀𝑚𝑎𝑥 = 𝑀(𝑷𝒖, 𝝉𝑢). Else, if 𝜒 = 0 and there are one or more of 

the five candidate points that are feasible, update 𝑀𝑚𝑎𝑥 with the worst feasible 𝑀(𝑷𝒖, 𝝉𝑢) and 

set 𝜒 = 1. If 𝑀𝑚𝑎𝑥 is updated, 𝜇 = 1. 

5.2.2 For SBSH-SP-P: If 𝜇 = 1, use the new 𝑀𝑚𝑎𝑥 to update values in Ω, and then set 𝜇 = 0. 

5.3 Increase counter 𝑛 ≔ 𝑛 + 5, and add information from evaluated candidate points to Λ, Ψ, P, Τ, 

and Ω. If 𝑛 ≤ 𝑛𝑚𝑎𝑥 return to step 3; otherwise, continue to step 6 

6. Return 𝑷𝒃𝒆𝒔𝒕 and 𝜏𝑏𝑒𝑠𝑡 

 

3.3.4 SBSH for Multi-Objective Area Pricing Design Problems 

 

In addition to the pollutant concentration constraints, Problem 2 considers two objectives that are not 

necessarily complementary: improving travel conditions and reducing the environmental impact of traffic. 

The available single-objective optimization heuristics cannot be applied to solve this problem, nor do they 

consider constraints beyond the closed boundary requirement, so in this section a new SBSH for constrained 

multi-objective ACP problems (SBSH-MP) is proposed. The algorithm consists of the following general 

steps. In each iteration a set of good solutions are selected from an archive of previously evaluated solutions, 

and based on these solutions a pool of candidates is generated. From this candidate pool, the solutions that 
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are predicted to be feasible and to dominate all other solutions (according to the surrogate models) are 

selected. From these a single solution is picked according to one of three selection rules. This promising 

solution is evaluated via the computationally expensive models, and the process repeats itself until a 

maximum number of iterations is reached.  In this subsection, the procedures to generate the candidate 

solutions and to select the most promising candidate are presented, as well as the steps of SBSH-MP. 

 

3.3.4.1 Procedures to Generate Candidate Solutions in SBSH-MP 

 

One of three types of candidate solutions are generated in each iteration of SBSH-MP. Which type of 

candidate solution is generated in an iteration is randomly determined. Type I, Type II, or Type III solutions 

are generated with probabilities Γ𝐼, Γ𝐼𝐼, and Γ𝐼𝐼𝐼, respectively, in each iteration. If Type I solutions are 

selected, then 𝑁𝐼 polygons are randomly generated. Each group I polygon is replicated |𝜏| times, and the 

replicated polygons are assigned a different toll level from the 𝜏 set. Type II and type III solutions are 

generated based on the information of the best known solutions at a particular iteration. The best solutions 

are those that satisfy the concentration constraint and are non-dominated. In the context of this study, a 

solution dominates another solution if it has a lower 𝑀 objective value and its 𝐻 objective value is no worse 

than the competitor’s value, or if it has a lower 𝐻 objective function value and its 𝑀 value is no worse than 

the competitor’s value. Non-dominated solutions are identified using a Pareto ranking procedure (Deb et 

al., 2002). 

In the case of type II solutions, a number 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 of seed solutions are selected from the set of non-

dominated solutions 𝚲𝑛𝑑. If the number of solutions in the non-dominated set (|𝚲𝑛𝑑|) is less that 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼, 

then the available non-dominated solutions are replicated until there are 𝑏𝑠𝑒𝑒𝑑𝐼 seeds. On the other hand, if 

|𝚲𝑛𝑑| is greater than 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼, then the crowding distance of each of the best known solutions is computed, 

and the 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 solutions with the highest crowding distance are selected. The crowding distance metric 

measures a solution’s proximity to other solutions in the objective function space; the greater the crowding 

distance, the farther away is a solution from other solutions. That is, crowding distance is an indicator of 

the level of uniqueness of a solution. In the numerical example, a solution’s crowding distance was defined 

as the product of the Euclidean distances to its two closest neighbors (in the objective function space). The 

last possible scenario is that there are no feasible solutions, in which case the 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 solutions that violate 

the least the concentration constraint are selected. After the 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 solutions are identified, the polygon 

associated with each seed is replicated |𝜏| times, and, as before, the replicated polygons are assigned a 

different toll level from the 𝝉 set, except for the toll already considered in the corresponding 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 

solutions. The type II solutions have the same charging boundary as the seed solutions, but they have 

different toll values.  

Type III solutions are generated using 𝑏𝑠𝑒𝑒𝑑,𝐼𝐼𝐼 seed solutions that are selected using the same strategies 

as the ones discussed for type 𝐼𝐼 solutions, but in this case the charging boundaries are modified. Similar to 

SBSH-SP, in SBSH-MP there are three boundary modification operations: expansion, contraction, and both 

expansion and contraction. For each type of operation there are two modes: uncoordinated and coordinated. 

These operations follow the same procedures as the ones for the type III candidate group in SBSH-SP, with 

the difference that, instead of anchoring the perturbations in a solution 𝑷𝑏𝑒𝑠𝑡, here the solutions are 

generated based on the information of the non-dominated seed solutions.  

 

3.3.4.2 Candidate Selection Procedure  

 

The selection of the most promising candidate solution follows three steps: (i) the identification of 

candidates that are predicted to be feasible, (ii) the identification of non-dominated candidates, and (iii) the 

selection of a solution that satisfies a performance criterion. In each iteration, the surrogate models guide 

the selection of the candidate solution that is then evaluated by the computationally expensive models. Let 

𝐗0 represent the set of all previously evaluated candidate designs, and Ω𝑀, Ω𝐻, and  
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Ψ represent the corresponding 𝑀 and 𝐻 objective values and the constraint value, respectively. First, the 

information stored in 𝐗0 and Ψ is used to fit a surrogate model 𝑠𝐶.  𝑠𝐶 is then utilized to predict the value 

of the concentration constraint for each candidate solution 𝑘. For each 𝑘, if the surrogate model predicts 

that the concentration constraint is violated (i.e., 𝑠𝐶(𝑷𝑘, 𝜏𝑘) > 𝐶𝑚𝑎𝑥),  the solution is discarded; otherwise, 

the solution is preserved. Next, surrogate models for the objective functions 𝑀 and 𝐻 are fitted with the 

data in sets 𝐗0, Ω𝑀, and Ω𝐻. Based on the predicted objective function values, the candidate solutions that 

are expected to be non-dominated are selected. For notational simplicity, let 𝝁𝑘 = {𝑷𝑘 , 𝜏𝑘} be a candidate 

solution predicted to be non-dominated (with 𝝁𝑘 ∈ 𝐗) on the basis of its predicted mobility objective 

function value 𝑀̂(𝝀𝑘) and its environmental inequality objective function value 𝐻̂(𝝀𝑘).     

In the final stage of the selection process a single solution 𝝁∗ is selected based on one of the following 

three rules. The first rule selects the 𝝁𝒌 with the maximum minimum domain distance relative to all 

previously evaluated solutions. That is,  

 

𝑿∗ = arg max
𝝁𝑘∈X

( min
𝝁0∈X0

‖𝝁𝑘 − 𝝁0‖)  (20) 

The 𝝁∗ under the second rule is the 𝝁𝑘 with the maximum minimum objective space distance relative to 

previously evaluated solutions, defined here as:   

 

𝝁∗ = arg max
𝝁𝑘∈X

( min
𝝁0∈X0

√[𝑀̂(𝝁𝑘)  − 𝑀(𝝁0)]
2

+ [𝐻̂(𝝁𝑘)  − 𝐻(𝝁0)]
2

)  (21) 

Under the third rule, the 𝝁𝑘 that results in the maximum predicted improvement in the dominated objective 

space is selected. Let 𝐴(𝐗0) be the area of the objective space that is dominated by the solutions in 𝐗0. 

Then the maximum predicted improvement in dominated space is defined as:  

 

𝝁∗ = arg max
𝝁𝑘∈X

[𝐴(𝑿0 ∪ 𝝁𝒌) − 𝐴(𝑿0)]  (22) 

If no solution is predicted to adjust the dominated space, then the algorithm selects a solution according to 

the first rule. The selected 𝝁∗ candidate is then evaluated by the computationally expensive models. The 

algorithm cycles, in order, through a different rule in each iteration. The three-rule strategy used in this last 

stage of the selection process was adapted from the work of Akhtar and Shoemaker (2016).  

 

3.3.4.3 Steps of SBSH-MP 

 

Next, the SBSH-MP steps, and associated notation, are presented. 

 

Decision variables 

𝜏 : charging area toll level 

𝑷 : vertices defining changing area boundary 

 

Counter and Index 

𝑛 : counter for the number of solutions evaluated with the computationally expensive 

models, and identifier for the evaluated solutions 

 

Functions 

𝑠𝑀 : surrogate model for the 𝑀 objective 

𝑠𝐻 : surrogate model for the 𝐻 objective 

𝑠𝐶 : surrogate model for the pollutant concentration function 
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Parameters 

𝑛0 : initial number of evaluated solutions 

𝑛𝑚𝑎𝑥 : maximum value for 𝑛  

 

Sets 

𝐗𝟎 : set of evaluated solutions 

Ω𝑀 : Set containing the 𝑀 objective function value for evaluated solutions 

ΩH : Set containing the 𝐻 objective function value for evaluated solutions  

Ψ : Set containing the constraint function value for evaluated solutions 

 

Algorithm Steps 

1. Initialization: 

1.1. Set 𝑛 = 𝑛0. 

1.2. Generate 𝑛 initial candidates (𝑷𝑛, 𝜏𝑛). 

1.3. Add points (𝑷𝑛, 𝜏𝑛) to 𝐗0 and initiate Ω𝑀, Ω𝐻, and Ψ as empty sets. 

1.4. Evaluate initial candidates with the computationally expensive models and store the results in sets 

Ω𝑀, Ω𝐻, and Ψ . 

2. Generate type I, type II, or type III candidate solutions, and select those candidates that meet the 

shape constraints and that have not been previously evaluated.  

3. With the information in sets 𝑿0, Ω𝑀, Ω𝐻, and Ψ fit the surrogate models 𝑠𝑀, 𝑠𝐻, and 𝑠𝐶 for the 

mobility and environmentally-oriented objective functions and the pollutant concentration 

function.   

4. Using  𝑠𝑀, 𝑠𝐻, and 𝑠𝐶, predict the objective function values and concentration function value for 

each candidate.  

5. Select 𝝁∗ according to the candidate selection procedure: 

5.1 Select the candidates that are predicted to satisfy the concentration constraint according to 𝑠𝐶. 

5.2 Select the candidates that are expected to be non-dominated according to 𝑠𝑀 and 𝑠𝐻. 

5.3 From the surviving solutions, select 𝝁∗ according to the three-rule strategy. 

6. Evaluate 𝝁∗ with the computationally expensive models, and store 𝝁∗ and the model outputs in 

𝑿0, Ω𝑀, Ω𝐻, and Ψ. 

7. If 𝑛 > 𝑛𝑚𝑎𝑥, return the set of non-dominated solutions in 𝑿0, Ω𝑀, Ω𝐻, and Ψ. Otherwise, set 𝑛 =
𝑛 + 1 and return to step 2. 
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4 Tests and Results 
 

 

An illustrative application of the proposed models and solution heuristics is presented in this section. The 

SBSH-SP is applied with three different objectives: 

 Maximization of consumer surplus function, 𝑀𝐶𝑆  

 Minimization of deviations from status quo deviation, 𝑀𝑆𝑄  

 Minimization of collected revenue, 𝑀𝑅𝑒𝑣 

The two objectives considered in the application of the SBSH-MP are: 

 Maximization of consumer surplus function, 𝑀𝐶𝑆  

 Minimization of environmental inequality (i.e., Atkinson index), 𝐻𝐴 

The accuracy of surrogate models in the context of this type of design problem is also explored. All tests 

were performed using the Chicago Sketch Network. 

 

4.1 Test Problems Setup 
 

Only the road network within the Cook and DuPage counties was employed, which, in the Chicago Sketch 

Network, is composed of 1,330 links and 421 nodes, including 160 origin-destination zones (see Figure 5). 

Base information of the demand and trip distribution in the test network was obtained from an online 

repository (Bar-Gera, 2014). The base demand data was augmented to create four time-of-day travel 

demand periods. The toll set 𝝉 contained tolls ranging from $1 to $20, with $1 increments. Homogeneous 

network users with a value of time of $30 per hour were assumed. 

Simple polygons with 12 vertices defined the charging boundary. The reference point 𝑂 was located in 

Chicago’s central business district (coordinate (710070, 1931400) in node system (Bar-Gera, 2014)). Radii 

could assume values in the interval [16500, 75500] (feet). The angles were bounded to [1.8, 5] (radians), 

with two vertices fixed at angles 1.8 and 5 radians. 

 

 
Figure 5. Abridged Chicago Sketch Network 
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4.1.1 Models  

 

The inputs necessary to compute objectives and constraint for the design problems were generated via a 

four-component model system. First, network flows were computed using a standard, sequential planning 

model composed of a trip distribution model, a mode split model, and a traffic assignment model. Part of 

the demand was assumed to have a fixed distribution, while another portion was distributed using a logit 

destination choice model. A destination’s attractiveness was specified as a function of its level of 

employment and the corresponding mode choice logsum variable. The mode split model was formulated as 

a binary logit model with only auto and transit as travel alternatives. A deterministic user equilibrium (DUE) 

model was used to assign traffic flows on the road network. The DUE problem was solved via the gradient 

projection method (Jayakrishnan et al., 1994). For simplicity, a multinomial logit model was used to assign 

transit flows. The three shortest paths were identified for each origin-destination pair, and transit flows 

where assigned to these paths based on travel time, cost, and average load factor (ratio of the demand on a 

link and its capacity) throughout the length of the path. The method of successive averages was utilized as 

the feedback procedure (Boyce et al., 2008). Based on the outputs of these models the 𝑀 objectives were 

computed. For the consumer surplus objective 𝑀𝐶𝑆 the marginal utility of income was set to one (extending 

the idea of a homogeneous population). Also, the logsums of the base scenario were dropped from the 

objective function, as these are constants. 

 Link emission were computed using an average-speed emission model that is a function of the link 

flows and average speeds computed in the travel demand model. Nitrogen dioxide (NO2) was selected as 

the pollutant of interest. Speed-based emission factors for NO2 were obtained from EPA’s MOVES model 

(EPA, 2014). Given the link emissions, a simple street canyon model was used to compute concentrations 

at receptor points (Venegas et al., 2014). Two receptors per street canyon (one per canyon face) were 

assumed. A different meteorological scenario (with distinct wind speeds and directions) was specified per 

time-of-day period. The 𝐶𝑚𝑎𝑥 for the NO2 concentrations was set to be five percent lower than the 

maximum concentration observed in the base, no-toll condition.  

For problem 2, the agent-level intake measures were computed after the link travel times, origin-

destination travel paths, and pollutant concentrations were modeled. The initial itinerary of the individuals 

was generated based on the household travel survey data collected from Chicago Metropolitan. The dataset 

includes the information on the set of activities conducted by travelers on a given day along with the 

information on the activity duration, location, schedule and the mode used to perform the activity. To 

compute the intake, agents were given the same breathing rate of 12.2 cubic meters per day. Having 

computed the agent’s NO2 intake, the Atkinson index was determined with a 0.75 inequality aversion 

parameter.   

 The previous model system takes a relatively short amount of time to evaluate (about 8 minutes in using 

12 cores of Precision T7910 with 144 GB of RAM). Naturally, the more detailed models used in practice 

could take up to a day to run. 

  

4.1.2 Algorithm Parameters 

 

Ten trial runs per problem specifications were performed for the single objective design problems, and five 

trial runs were performed for the bi-objective design problem. A trial run was initialized with 100 solutions, 

and an additional 150 candidate designs were evaluated in each run (i.e., 𝑛𝑚𝑎𝑥 was set to 250 for the trial 

runs of SBSH-SP and SBSH-MP). The averaged results from these trial runs are reported in section 4.1.4. 

The parameter values for the SBSH-SP and SBSH-MP trials are reported in Table 1 and Table 2, 

respectively. The convexity index was set to 0.45 (Maruyama et al., 2014), and 𝜚 was defined as 0.8 radians. 
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Table 1. Parameter Values used in the SBSH-MP Trial Runs 

Parameter Value 

𝜀 5 

𝐷𝐼𝐼 10 

𝐷𝐼𝐼𝐼 4000 

𝐷𝐼𝑉 1000 

Γ𝑈 0.60 

Γ𝑚𝑢𝑡 0.02 

[𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] [0,0.1] 

[𝜔𝛿,𝑚𝑖𝑛, 𝜔𝛿,𝑚𝑎𝑥] [0.8,1] 

𝑑𝑚𝑎𝑥 0.40 

𝜎2 0.05 

𝐺𝑚𝑎𝑥,𝑓𝑎𝑖𝑙 20 

𝜅 1000 

Υ [0.95,0.97,1]  

ΥGA [0.70,0.85,0.90,0.95,1] 
 

 
Table 2. Parameter Values used in the SBSH-MP Trial Runs 

Parameter Value 

Γ𝐼 0.05 

Γ𝐼𝐼 0.20 

Γ𝐼𝐼𝐼 0.75 

Γ𝑈 0.60 

𝑏𝑠𝑒𝑒𝑑,𝐼𝐼 5 

𝑏𝑠𝑒𝑒𝑑,𝐼𝐼𝐼 5 

[𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] [0,0.1] 

[𝜔𝛿,𝑚𝑖𝑛, 𝜔𝛿,𝑚𝑎𝑥] [0.8,1] 

𝑑𝑚𝑎𝑥 0.40 

𝜎2 0.05 

 

4.2 Results for the Surrogate Models’ Accuracy and Correlation Tests  
 

A geometric representation of a charging area’s boundary is arguably intuitively reasonable. However, it is 

an open question whether this data representation is useful within a surrogate optimization-based 

framework as inputs to the model approximations. For this reason, a series of tests were conducted to 

explore the predictive accuracy of surrogate models estimated using the proposed simple polygon 

representation of charging boundaries, as well as the correlation of the predictions relative to the actual 

model outputs. Two sets of tests were conducted using a sample of 500 charging schemes created by 

randomly generating charging boundaries (polygons) and associated tolls. In the first set of tests the 

difference between the surrogate predictions and the actual model values was examined. The second set of 

tests examined the utility of the surrogate predictions in the classification of solutions as either feasible or 

infeasible on the basis of the pollutant concentration threshold. The predicted class membership (i.e., 

feasible or infeasible) was compared with the actual class membership, as indicated by each solution’s 

modeled maximum concentration.  



28 

 

Four types of surrogate models were tested: radial basis functions with linear form (i.e., linear RBF), 

cubic RBF, thin plate spline RBF (Gutmann, 2001), and a second-degree polynomial model (Khuri and 

Mukhopadhyay, 2010). In the first set of tests a series of k-fold cross validation tests were performed for 

each surrogate model type. In k-fold cross validation the sample is divided into K partitions. A partition 𝑘 

is used once as the validation data set, while the remaining partitions are used to fit the surrogate model; 

this is repeated for all partitions. Folds of 2, 5, and 10 were used in the tests, with sampling for each fold 

performed 30 times. In addition to the k-fold cross validation tests, cross validation tests were performed 

by randomly selecting 100 data points (candidate schemes) as the training data set, while the remaining 400 

data points were used for validation. Again, these tests were repeated 30 times.  

In the first set of tests, the surrogate’s predictive accuracy and correlation with the actual model outputs  

was quantified using models for the: consumer surplus objective (𝑀𝐶𝑆), the status quo objective (𝑀𝑆𝑄), the 

revenue objective (𝑀𝑅𝑒𝑣), consumer surplus objective adjusted by the penalty method  (equation 16, 

Penalty 𝑀𝐶𝑆), and the maximum concentration constraint (𝑐̃𝑚𝑎𝑥). Table 3 reports the correlation between 

the surrogate predictions and the real function values (Pearson correlation coefficient; PC), as well as the 

mean average percent error (ME). The best results in each test category are in bold (e.g., a 0.69 correlation 

of the linear RBF surrogate was the highest for 100/400 cross-validation test for Penalty 𝑀𝐶𝑆). On average, 

the worst results were obtained for the second-degree polynomial models. The RBF surrogates obtained 

similar results, although, the results suggest that the best surrogate model is the thin-plate spline RBF. The 

thin-plate spline surrogate obtained its lowest ME for the 𝑐̃𝑚𝑎𝑥 function (lower than 1 percent). Another 

noteworthy result are the large mean errors (over 150%) and moderately good correlation (over 0.70 for 

RBFs) in the Penalty 𝑀𝐶𝑆 tests, which are significantly worse than the results obtained for the other 

functions. This result is to be expected as the penalty method dramatically adjusts the objective function 

value as a function of constraint violations, which has the effect of creating a discontinuous objective 

function space.  

 
Table 3. Results for Cross-Validation Tests 

    𝑴𝑪𝑺 𝑴𝑺𝑸 𝑴𝑹𝒆𝒗 Penalty 𝑴𝑪𝑺 𝒄̃𝒎𝒂𝒙 

Type TEST CP ME CP ME CP ME CP ME CP ME 

Cubic 

RBF 

K = 2 0.998 2.64 0.996 22.63 0.985 7.32 0.716 203.85 0.987 1.07 

K = 5 0.998 4.19 0.997 14.54 0.982 6.47 0.771 116.54 0.987 0.99 

K = 10 0.998 3.58 0.998 15.37 0.985 6.20 0.805 121.07 0.989 0.86 

100/400 0.998 3.96 0.994 25.49 0.978 9.29 0.633 154.44 0.970 1.59 

Thin-Plate 

RBF 

K = 2 0.998 1.96 0.997 19.26 0.987 6.80 0.718 189.21 0.989 0.95 

K = 5 0.999 3.09 0.998 14.28 0.985 5.78 0.778 109.35 0.990 0.90 

K = 10 0.998 2.87 0.998 13.75 0.987 5.77 0.811 113.55 0.990 0.78 

100/400 0.998 3.87 0.994 22.10 0.980 8.84 0.643 143.20 0.971 1.53 

Linear 

RBF 

K = 2 0.998 1.24 0.996 14.14 0.986 9.22 0.717 169.12 0.986 1.14 

K = 5 0.998 3.23 0.997 12.20 0.985 6.54 0.784 97.59 0.987 0.99 

K = 10 0.998 3.29 0.997 12.30 0.987 6.62 0.809 108.79 0.989 0.87 

100/400 0.995 3.35 0.992 20.09 0.980 11.47 0.690 122.07 0.963 1.76 

Polynomial 

K = 2 0.986 7.97 0.956 70.57 0.881 26.84 0.345 326.74 0.834 4.37 

K = 5 0.992 9.11 0.974 39.31 0.927 17.41 0.398 206.24 0.890 3.05 

K = 10 0.995 6.22 0.981 34.66 0.951 13.46 0.415 202.18 0.914 2.62 

100/400 0.995 6.29 0.977 44.85 0.945 16.85 0.408 221.01 0.904 2.87 

 



29 

 

Figure 6 reports the results obtained for the solution classification tests. The thin-plate RBF model was 

used. In four classification test runs the 𝐶𝑚𝑎𝑥 threshold was set to be lower than the base maximum pollutant 

concentration by 5, 15, 20, and 25 percent, respectively. The figure consists of so called confusion matrices 

that report the proportions of correct classification given the surrogate predictions and the modeled (actual) 

classification (e.g., true negative: solution was predicted to be infeasible and it is actually infeasible 

according to the 𝑐̃𝑚𝑎𝑥 result) and the proportions of incorrect classifications (e.g., false negative: solution 

was predicted to be infeasible and it is actually feasible). The results of the trial runs show a high degree of 

classification accuracy, with the highest misclassification at 7 percent for the 𝐶𝑚𝑎𝑥 set to be 20 percent 

lower than the base maximum concentration. These results are not too surprising given the low ME obtained 

for the 𝑐̃𝑚𝑎𝑥 function, but they should not be generally expected since it is unlikely that the output of 𝑐̃𝑚𝑎𝑥-

type functions will usually be easy to accurately predict. 

Overall, the cross-validation tests for the surrogate models provide evidence for the potential usefulness 

of the geometric representation of charging boundaries in surrogate-based solution heuristics, as well as 

showing, once again, that available surrogate models provide relatively good approximations to commonly 

used models in transportation engineering planning. In the application tests of the SBSHs, the thin plate 

spline RBF was used, given the results for the test problems considered here.  

 
Figure 6. Confusion matrix for solution feasibility tests 

4.3 Results for Single-Objective Design Problem 
 

As mentioned in the introduction of this section, the SBSH-SP was tested for three constrained, single-

objective problems for the design of area pricing schemes. Figure 7 shows the average percent change 

relative to each run’s best initial design for the single objective problem with the 𝑀𝐶𝑆, 𝑀𝑆𝑄, and 𝑀𝑅𝑒𝑣 

objectives, respectively. On average, the best solutions generated by the SBSH-SP for the 𝑀𝐶𝑆, 𝑀𝑆𝑄, and 

𝑀𝑅𝑒𝑣 problems had objective function values that were approximately 12%, 11%, and 8% lower than the 

best solution in the initial pool of solutions.  In terms of which version of the SBSH-SP heuristic is best, 

the results are mixed: the penalty-based method (SBSH-SP-P) was markedly outperformed by SBSH-SP-S 

in the 𝑀𝐶𝑆 problem, but it resulted in the best results in the other two problems. In the initial iterations of 

the trial runs, however, the SBSH-SP-S found, on average, better results in the 𝑀𝑆𝑄 and 𝑀𝑅𝑒𝑣 problems. 

(a) (b) 

(c) (d) 
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This is significant as there can be design problems in which 250 (100 initial solutions plus 150 extra 

evaluations) design evaluations would take too much time relative to the time available for analysis. So, for 

instance, SBSH-SP-S would be the best performing heuristic in all the problems considered here if there 

was time for only 10 iterations of the solution heuristic.  

 For each problem considered, Figure 8 shows how the diversity in the pool of evaluated solutions 

evolves as more candidate solutions selected by the SBSH-SPs are evaluated (i.e., as more solutions are 

added to the pool of evaluated solutions). Diversity here refers to the variability that exists between 

solutions. In the language of evolutionary algorithms, the genotypic diversity is of interest in this analysis, 

that is, diversity in terms of the differences between the sets of decision variables that define different 

designs. The moment of inertia measure proposed by Morisson and de Jong (2001) is used to quantify 

diversity. The moment of inertia (normalized by the population size and the initial inertia level in each trial) 

was computed for the geometric representation of the charging scheme ((𝑷, 𝜏) diversity) and for their 

corresponding 𝜂 representation ((𝜼, 𝜏) diversity). As expected, as the heuristics explore the most promising 

solution space, the degree of diversity generally reduces. As the units of the (𝑷, 𝜏) and (𝜼, 𝜏) representations 

are different, no meaningful comparison can be made regarding differences between these two curves. 

However, both curves show that SBSH-SP-S maintains more diversity in its pool of solutions, which is 

positive since it is less likely to be trapped on a local minimum, but negative because it might mean that 

the search jumps away to areas of the solution space that, although they may add diversity, are unlikely to 

result in a better design. The latter is an important consideration since in the application context of interest 

there are only relatively few solutions that can be evaluated.  

 Figure 9 presents examples of the all the polygons generated in three trial runs of SBSH-SP-S for the 

three planning problems considered, along with the toll level associated with the best charging boundary. 

In each figure in Figure 9, the 150 polygons generated during the trial run are plotted (blue lines), along 

with the best simple polygon (red line) and the maximum extension of the charging area (black polygon) 

(the boundaries for the 100 initial solutions are not plotted). As it can be seen in the figure, there is a 

concentration of polygons around the best solution, which is to be expected given that three of the five 

strategies that compose the candidate generation procedure search for solutions based on the information 

of the best known solution at the time. 

Obviously, the observations made in these tests are specific to the particular problems considered; 

different problems with different networks and model systems could suggest the opposite of what has been 

shown here regarding the performance of SHBS-SP-P vis-à-vis SHSB-SP-S. Nevertheless, the tests show 

that the proposed heuristics and, particularly, the geometric-based representation of charging boundaries 

and the surrogate model predictions that constitute the heuristics, can be used to search for solutions to ACP 

design problems with a single planning objective. 
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Figure 7. Progression in average percent improvement relative to best initial designs for single-objective problems 

 

   

 

 

 

(a) 

(b) 

(c) 
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Figure 8. Progression of the average diversity levels of the solution pool for the SBSH-SPs 

(a) 

(b) 

(c) 
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Figure 9. Example of generated polygons in trial runs with the a) 𝑴𝑪𝑺, b) 𝑴𝑺𝑸, and c) 𝑴𝑹𝒆𝒗 objectives 

 

4.4 Results for Bi-Objective Design Problem 
 

Figure 10 shows that in each iteration of the SBSH-MP there is a steady improvement in the objective 

space dominated by the evaluated solutions. This figure shows the average improvement in dominated 

objective function space relative to the objective function space dominated by the initial pool of solutions. 

By the 150th candidate evaluation, the final pool of solutions dominated, on average, 49.3 percent more 

objective space than the initial pool of solutions. The results suggest that the proposed heuristic is capable 

of identifying relatively good solutions in the context a bi-objective problem in which the number of 

function evaluations is significantly constrained.  

a) 

𝑀𝐶𝑆 

(b) 

(c) 
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Figure 10. Average improvement in dominated objective space 

As an example, in Figure 11, the normalized objective function values for the initial solutions and the 

solutions generated by the SBSH-MP in a trial run are presented. Most of the solutions selected by the 

algorithm are feasible (97 percent).    

 
Figure 11. Example of the distribution of a pool of solutions’ objective values for a trial run 
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5 Summary and Potential Research Opportunities   
 

 

The main research contributions of this project are as follows: 

 Environmentally-oriented optimization problems for the design of ACP schemes: In addition to the 

single objective planning problem with environmental constraints, an ACP design problem was 

presented that incorporates activity-based measures of agents’ exposure to vehicle-generated air 

pollutants, a metric that is used to account for the often-ignored goal of reducing environmental 

inequality in transportation planning interventions.  

 Surrogate-based solution heuristics for single- and multi-objective ACP design problems: Two 

heuristics were proposed to solve optimization problems for ACP design. The heuristics utilize a 

geometric representation of charging boundaries, which is used to fit surrogate models that are then 

used in the search of good problem solutions. The results of the numerical tests generally showed 

a strong correlation between the surrogate model predictions and the outputs of different models, 

thus suggesting that the geometric representation of charging boundaries, coupled with surrogate 

models, can be useful elements of solution heuristics. Tests with the proposed heuristics also 

suggest that the algorithms can find solutions that are substantial better than the initial solution 

pool. 

 A new network-based, activity model for travel demand analysis: An activity-based model was 

developed to infer the mobility behavior of travelers in response to change in the network and cost 

of travel. The Household Activity Pattern Problem was utilized as the core behavioral model, which 

was extended to incorporate variable travel time and mode choice (for two modes of transportation, 

bus and car).     

The ultimate goal of this research project was to create a practical methodology for the optimization-

based design of ACP schemes. To this end, future research could focus on the development of modeling 

frameworks that would reduce the computational burden of employing, within the context of an 

optimization model, an agent-based simulation of the travel and activity patterns of all agents in the study 

region. For example, a procedure could be developed in which the aggregate outputs of agent-based 

behavioral models are approximated using metamodels that are conceptually similar to incremental demand 

models (or pivot models). Assuming that only aggregate outputs are of interest, the metamodels could offer 

a relatively quick way of modeling the impacts of changes in features of the transportation system. If the 

metamodels are shown to be good approximations, this strategy could change the way agent-based models 

are employed in practice. Another practical consideration is the formulation of ACP design problem that 

consider how the revenue generated by the road pricing scheme is reinvested in the transportation network. 

An example of this type of model is a planning problem that jointly considers the design of transit networks 

and ACP schemes. 

Research extensions could also focus on the geometry-based representation of charging boundaries. In 

this project, boundaries were represented using simple polygons. However, there is a vast literature on 

shape optimization that could be relevant to ACP problems. It is possible that alternative models for 

boundary shape representation could offer a richer and more useful encapsulation of the information that 

defines a charging boundary.  

Lastly, the HAPP model can be extended to predict the elasticity of mobility patterns with respect to 

changes in different policies, which might directly or indirectly impact the overall utility gained by the 

travelers by moving in the networks and conducting their daily activity routines.    
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